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Abstract

The paradigm of delivering real-time applications throughclouds of geographically distributed
service points is becoming increasingly attractive for mobile operators. Our research explores
distributed management of quality of service (QoS) requirements through this infrastructure. The
anticipated system scale and the need to adapt to changing behavior of mobile users raise novel
problems and call forlocal and adaptivedistributed optimization algorithms behind the cloud
framework.

We focus on problems of dynamic assignment of mobile users and groups thereof toapplication-
levelservice points. In contrast with link-layer associations,which are primarily driven by physical
proximity to the infrastructure, application session assignment must jointly consider network dis-
tances, congestion, and handoff costs to optimize the QoS inthe long run. We combine theoretical
approaches with simulation and prototype system implementations.

We first consider a single-user case, namely, the problem of dynamic balancing between the
desire to always assign the user to the closest server, and the need to reduce the number of handoffs.
We propose an optimal offline solution, and a tightly competitive and efficient online algorithm,
DTrack. We also demonstrate motion-aware algorithms, which achieve a near-optimal result using
a very limited and noisy movement prediction.

Next, we address the problem of assigning multiple users to servers. This assignment must
jointly consider loads and distances, which we call load-distance balancing, or LDB. We analyze
multiple flavors of this optimization problem in the centralized setting, and provide efficient poly-
nomial algorithms for them. Following this, we present a scalable distributed solution, Ripple,
which can use any sequential algorithm as a local building block. Ripple adapts its overhead to
network congestion, and constructs a local assignment whenever possible.

Finally, we propose a comprehensive handoff management framework, QMesh, which ad-
dresses all assignment factors in the context of a large-scale wireless mesh network (WMN). We
perform a comprehensive simulation study of QMesh based on real location and mobility data,
and demonstrate its significant advantage over traditionalapproaches. We also present a QMesh
software prototype implemented within the Win32 kernel, which harnesses multiple desktops as a
QoS-aware WMN infrastructure.
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Notations and Abbreviations

AP - Access Point
ARM - Application Resource Monitoring
ARP - Address Resolution Protocol

AWWP - Alternating Weighted WayPoint
CDN - Content Delivery Network

DHCP - Dynamic Host Configuration Protocol
GW - Gateway

ICMP - Internet Control Message Protocol
IP - Internet Protocol

IRDP - ICMP Router Discovery Protocol
LAN - Local Area Network
LDB - Load-Distance Balancing

LQSR - Link Quality Source Routing
MAC - Media Access Control
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Chapter 1

Introduction and Background

The perception of networked service delivery to mobile users has been rapidly evolving over the
last decade. There is strong evidence that future wireless network infrastructures will conform
to the TCP/IP architecture and its related supporting mechanisms for quality of service (QoS),
and mobility. TCP/IP is being adopted by emerging standardsfor beyond-3G cellular networks
[91]. This trend enables the convergence of the traditionally voice-oriented cellular networks with
data access services over the global Internet. At the same time, low-cost and high-speed wireless
access to IP networks is becoming widely available via 802.11x (WiFi) and 802.16x (WiMax) [14].
The latest generations of these standards offer increased mobility and QoS support, allowing the
proliferation of real-time multimedia services over traditional data networks.

Following the recent trend in wireline networks [9], mobile operators are expected to deploy
QoS-sensitive services at the network edge. This approach promises a revolutionary improvement
of user experience and scale-up of service capacities compared to traditional data-center architec-
tures. Consider, for example, wireless mesh networks, or WMNs [16] – a growing promise for
broadband Internet delivery to the areas of limited wired connectivity. WMN users access the In-
ternet through a multi-hop backbone of fixed wireless routers. The current perception of a router
connected to the wired network, called gateway, is sharing its access link among multiple users.
We envision extending this functionality to a wide variety of stateful session-oriented applications,
e.g., a media cache [67], a VoIP relay [47], a groupware (e.g., push-to-talk) hub [73], an online
gaming server [42], or a mix-and-match thereof (see Figure1.1for illustration).

This dissertation, which embodies most of the contributionof the Mobility and Group Man-
agement Architecture (MAGMA) research project [11], addresses the challenge of managing the
complexity of mobile service provisioning through a large-scale distributed infrastructure. In this
context, dynamic assignment of mobile users or groups thereof to application service points raises
many novel algorithmic aspects. For example, it must jointly consider a variety of factors that af-
fect the QoS, namely, network distances between users and servers, congestion, and handoff costs.
Real-time assignment decisions must handle an inherent lack of complete information dictated by
dynamic phenomena (user mobility, churn, flash crowds etc.)as well as by the anticipated system
scale (thousands of service points and millions of users). These harsh constraints call forlocal and
adaptivedistributed algorithms that approximate global optimization in presence of uncertainty.
We propose rigorous solutions, and complement them with extensive simulations and prototype
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Figure 1.1:Application services deployment at the edge of a WMN.

implementations in real systems.
In Chapter3, we consider the problem of dynamically assigning application sessions of mobile

users or user groups to service points. Such assignments must balance the tradeoff between two
conflicting goals. On the one hand, we would like to connect a user to the closest server, in order to
reduce network costs and service latencies (the impact of congestion is considered negligible). On
the other hand, we would like to minimize the number of costlysession migrations, or handoffs,
between service points. We tackle this problem using two approaches. First, we employ algorith-
mic online optimization to obtain competitive algorithms whose worst-case performance is within
a factor of the optimal. Next, we present scalable opportunistic variations of these algorithms,
which asymptotically improve the average-case performance. Finally, we demonstrate motion-
aware algorithms, which achieve a near-optimal result using a very limited and noisy movement
prediction. We conduct case studies of two settings where such algorithms are required: wireless
mesh networks with mobile users, and wide-area groupware applications with or without mobility.
The results of Chapter3 appear in [37] (preliminary version in [36]).

In highly utilized networks, QoS-sensitive service assignment should jointly handle network
distances and congestion. Chapter5 introduces aload-distance balancing(LDB) problem in as-
signing users of a delay-sensitive networked application to servers. We model the service delay
experienced by a user as a sum of a network-incurred delay, which depends on its network distance
from the server, and a server-incurred delay, stemming fromthe load on the server. The problem
is to minimize the maximum (alternatively, average) service delay among all users. We study this
problem in the centralized setting (Chapter4), and further focus on its min-max variation in a
distributed setting (Chapter5).

We prove the NP-hardness and hardness of approximation of the min-max LDB problem in
Chapter4. Following this, the best possible 2-approximation algorithm for general network dis-
tance functions is presented. We also demonstrate polynomial algorithms for the min-average LDB
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problem, and the special case of min-max LDB in which networkdistances are Euclidean distances
on a line.

Chapter5 addresses the challenge of finding a near-optimal min-max LDB assignment in a
scalable distributed manner. The key to achieving scalability is usinglocal solutions, whereby each
server only communicates with a few close servers. Note, however, that the attainable locality of a
solution depends on theworkload– when some area in the network is congested, obtaining a near-
optimal cost may require offloading users to remote servers,whereas when the network load is
uniform, a purely local assignment may suffice. We present algorithms that exploit the opportunity
to provide a local solution when possible, and thus have communication costs and stabilization
times that vary according to the network congestion. We evaluate our algorithms with a detailed
simulation case study of their application in assigning static hosts to Internet gateways in an urban
WMN. Preliminary results of this research appear in [38].

Chapter6 jointly considers load peaks, user mobility, and handoff penalties, thus providing
a unified approach to cost-driven handoff management (Chapter 3) and load-distance balancing
(Chapters4 and5). We focus on very large mobile WMN environments, and propose QMesh, a
fully distributed framework for user-gateway assignment.QMesh runs inside the WMN, and is
oblivious to underlying routing protocols (a traffic engineering approach). It employs a scalable
and adaptive probing policy for LD-balanced gateway selection, which is fundamentally different
from the approach taken in Chapter5. We evaluate QMesh using realistic delay models through
an extensive simulation (mostly of VoIP) in two settings: (1) a university campus network, with
user mobility traces from the public CRAWDAD dataset [2], and (2) a large-scale urban WMN.
Simulations demonstrate that QMesh achieves significant QoS improvements and network capacity
increases compared to traditional handoff policies, and illustrate the need for intelligent gateway
assignment within the mesh. The results of Chapter6 appear in [39].

Finally, we present a partial prototype implementation of QMesh (Chapter7) – a software
package that allows utilizing multiple geographically scattered Windows desktops as a wireless
mesh network infrastructure with seamless user mobility support. This infrastructure supports its
users through standard protocols, and does not require any client software installation. QMesh is
implemented as a Windows XP driver, on top of the Mesh Connectivity Layer (MCL) toolkit from
Microsoft Research that provides basic routing capabilities. To the best of our knowledge, this
is the first mobile mesh solution implemented within the Win32 kernel space. The results of this
chapter appear in [40].

All in all, our work makes multiple contributions to the study of managed mobile services.
Chapter8 discusses the conclusions from our research and outlines future directions.

1.1 Novelty and Related Work

The high-level goal of this work is contributing to the theory, networking, and systems commu-
nities in studying the user problems related to assigning mobile users to service points in a large-
scale environment. We contrast the high-level approach taken throughout the thesis to previous
approaches. Specific comparisons of particular results with their related techniques appear in ap-
propriate chapters.
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Service placement and selection problems have been widely addressed by the CS-theoretic
community (see, e.g., [78] for an extensive survey). More recently, the networking community
addressed them as well, e.g., in the context of placing mirror caches in content delivery net-
works [67, 87]. The distributed computing community started addressingthe service location and
association problems in the context of local computation, i.e., studying the tradeoff between the
running time and the achieveable approximation of the optimal cost [70, 79, 71]. In contrast with
the traditional approach, which considered static users and facilities, computational geometry re-
searchers addressed dynamic clustering and center maintainance in mobile networks [30, 59]. All
of the above focused on optimizing the user-server network distances while ignoring congestion
arising among the sessions/flows. A recent research (e.g., [46, 47]) addressed this shortcoming
but focused on systems with fairly static users and predictable traffic requirements, e.g., Internet
backbone. We take this study one step further, by addressingmobile users which create dynamic
workloads.

Handoff optimizations in mobile systems have been studied mostly in the context of cellular
networks (e.g., [86]). These studies primarily focused on optimizing network capacity. In contrast
with application-level assignments, the link-level associations between cellular users and base sta-
tions are primarily driven by physical metrics (e.g., signal strength, signal-to-noise ration (SNR),
etc), which leave little room for freedom. In addition, voice session handoffs have negligible per-
formance impact, whereas stateful application transitions may incur high costs.

In the theory plane, the interplay between distances, loads, and handoff costs opens an oppor-
tunity to explore new algorithmic problems. We address traditional problems, in which the whole
workload is known a-priori, as well as online optimization problems, in which new inputs arrive
in the course of the execution [33]. For example, optimizing the handoff sequence in the presence
of transition penalties is a variation of the seminal metrical task system (MTS) problem [34, 26].
In this context, a few realistic assumptions about the mobility model allow specific optimizations
that significantly outperform the general-purpose solutions. As a second example, considering
loads and distances together (the load-distance balancingproblem) is a novel approach to service
assignment, which resembles the facility location [78] but has a different model, and subsequently,
a different solution. We extend this direction by exploringload-distance balancing in a large-scale
distributed setting, and presented scalable local algorithms.

In the system/experimental plane, we pursued practical policies (adapted from the theoretical
algorithms) which solve the problems that are not addressedby the currently deployed solutions.
For example, the prototype implementations of mobile WMNs that recently emerged (e.g., [18]),
adopt the nearest-gateway handoff policy, i.e., each useris automatically assigned to the closest
gateway. This simple local approach is acceptable for small-scale installations, however it fails to
handle hotspots and handover costs in wide-area WMNs correctly. Our work proposes alternative
QoS-sensitive assignment policies which, on one hand, scale well with network size, and on the
other hand, are simple enough to implement in a real-time environment (e.g., city-wide WMN).
These policies are verified through extensive simulations and, partially, through a working mobile
WMN prototype.
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Chapter 2

Methodology

We evaluate our research through closed-form analysis, extensive simulations, and prototype im-
plementations. We precisely define the system models and optimization goals, and rigorously ana-
lyze the proposed algorithms wherever possible. Simulations primarily cover the studies in which
the worst-case theoretical evaluation does not capture thereality correctly. In this context, we em-
ploy credible workloads based on public datasets [2] or widely accepted synthetic models [65, 96].
Finally, a prototype software implementation provides a proof of feasibility of our approach in a
real-time environment, and demonstrates interoperability with technologies on the ground.

We employ a variety of theoretical analysis methods, in accordance with the problems studied.
Since the research deals with optimization problems, we compare our solutions to optimal ones,
and express their quality in terms of approximation factors. We explore the tightness of analysis by
demonstrating lower bounds within a constant factor from the algorithms’ worst-case performance
guarantees. For example, Chapter3 addresses service assignment as online optimization, in which
no forecast about the user’s future location exists. We apply competitive analysis, which limits
the worst-case ratio between the cost produced by our onlinealgorithms and the optimal cost, for
all possible input sequences (mobility patterns). We employ intelligent heuristics to improve over
theoretical competitive solutions with worst-case guarantees when side information (e.g., motion
prediction) can be exploited. In a one-shot setting, we employ reductions to prove computational
hardness, and present a constant-approximation algorithmfor an NP-complete centralized load-
distance balancing problem (Chapter4). In some cases, when an optimal solution of an online or
offline optimization problem is well-structured, dynamic programming is applicable to achieve a
time- and space-efficient algorithm (e.g., Chapters3 and4).

Our algorithms are designed for a distributed environment,hence they address challenges spe-
cific for this area, e.g., the protocols’ progress and termination properties. For example, in Chap-
ter 5, we ensure convergence through randomized tie-breaking. At the protocol evaluation side,
specific attention is paid to scalability of solution cost and protocol overhead with network size.
Furthermore, we extend the concept ofworkload-sensitive localityintroduced by [72, 31] – namely,
the algorithms’ convergence time and communication overhead depend on the distribution of work-
load. Hence, whenever the input is not extremely peaky (which happens in most cases), scalable
local computation is enough to provide the desired cost. We trade protocol scalability versus the
required approximation (Chapter3 and Chapter5). Finally, we demonstrate that the quality of
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assignment produced by scalable randomized probing is almost as good as that of the best-match
assignment with perfect instantaneous information (Chapter 6).

Simulation-based evaluation focuses on average-case performance metrics (either absolute or
relative to the optimum), for realistic workloads. Every data point is averaged over 20 to 50 runs.
Our mobility simulations employ the widely accepted randomwaypoint (RWP) model [96] for
nearly-random motion. We introduce the Alternating Weighted Waypoint (AWWP) model (Chap-
ter 6, extends [65]), which captures the time-varying non-uniform distribution of mobile users in
urban environments more realistically. We use the CRAWDAD set of public traces [2] to model
the real campus network topology, as well as mobility patterns of office users. In order to allow
for large-scale simulations with thousands of users and access points (Chapter6), we developed
a flow-level WMN simulator, MeshSim [12]. Packet-level simulation tools [4, 13] cannot handle
such a scale. MeshSim models the delays incurred to VoIP flows, using a realistic link model [94]
and VoIP-specific traffic optimizations in a WMN [58]. We use the common Mean Opinion Score
(MOS) metric to evaluate the QoS of VoIP flows.

A prototype mobile WMN implementation (Chapter7) involved NDIS driver development in
the Win32 OS kernel, and multiple design decisions to achieve interoperability with existing tech-
nologies. Our implementation is based on the Mesh Connectivity Layer (MCL) software package
previously developed at Microsoft Research [5].
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Chapter 3

Nomadic Service Assignment

Recent advances in network technology, along with the increasing demand for real-time networked
applications, are bringing application service providersto deploy multiple geographically dis-
persed service points, or servers. This trend is expected tofurther expand with the explosion
of new applications and the expansion of services to larger domains. In such settings, a given ap-
plication session is typically associated with some server. In real-time applications, the association
selection is driven by quality of service (QoS) considerations, which may depend, e.g., on the net-
work distance of the user from the server. As many of these applications are becoming increasingly
available to mobile users and dynamic user groups, the factors that dictate the server selection can
vary with time. For example, due to a user’s movement, a server providing optimal QoS at some
point may later provide poor QoS, rendering it desirable to migrate the application session from
one physical server to another. We therefore believe that many future distributed service infras-
tructures will employnomadic service points, and will transparently manage such dynamic session
assignments.

One important domain where nomadic service points can be exploited to serve mobile users is
wireless mesh networks (WMNs) [16, 51, 69]. WMNs provide an increasingly popular solution
for Internet access from residential areas with a limited wired infrastructure. These networks are
built around multiple stationary wireless routers. Some ofthem, called access gateways, are wired
to the Internet. The mesh access protocol typically routes the traffic of each mobile node through
a single access gateway. As the node travels away from its original location, the network delay
between it and the gateway grows, and the protocol can re-route the traffic through a different
gateway to improve the QoS. For example, a greedy protocol would always route the traffic via the
closest gateway. However, this optimization is not always adequate for highly mobile users, which
suffer from QoS degradation caused by frequent handoffs. Intelligent nomadic service assignment
algorithms can mitigate the tradeoff between access delay and session interruptions.

Server assignment quality also has special importance in collaborative groupware applications
like instant messaging, push-to-talk, and massively multiplayer online games, where the impact of
a bad association can be magnified with the group’s scale. Theinfrastructure for these applications
is typically based on servers that both maintain the application state and act as forwarding proxies.
Intuitively, the server should reside close to the group’s centroid in order to serve the group best.
In groups with a highly dynamic membership, the optimal server selection changes as users join
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or leave the group. Thus, there is a tradeoff between the costof assignment to a suboptimal server
(e.g., increased delay) and the cost of state transfer incurred upon the re-assignment.

We study the problem of optimizing the dynamic assignment ofsessions to service points.
Such a service assignment should balance the tradeoff between connecting sessions to the closest
servers at all times, and minimizing the number of session migrations. We capture this tradeoff by
assuming two types of service costs: asetupcost, incurred whenever the session is assigned to a
new server, and aholdcost, incurred every unit of time the server is being used. The former reflects
one-time expenses like signaling overhead and applicationstate transfer, whereas the latter captures
continuous expenses like buffer space, processing power, network latency, and bandwidth. For
simplicity, we focus on the case where the setup costs do not vary over time, and are identical for
all servers. The hold costs may vary in both aspects. For example, in a mobile WMN, connection
transfers are done through wired infrastructure of predictable performance. In this context, the
setup cost is fixed, since it does not depend on the location ofthe source and target gateways. The
hold costs, which capture user–gateway distances, are variable.

Thenomadic service assignmentoptimization problem is to find a sequence of server assign-
ments that minimizes the total cost. Obviously, we are interested in theonline version of this
problem, in which the service costs are received on the fly. Wetreat the problem both as a theo-
retical online optimization problem and as a practical system question. We first handle the generic
nomadic service assignment problem, and then examine it more closely in two specific case studies
pertaining to specific example domains.

We formally define the problem in Section3.2. Then, in Section3.3, we present anoffline
algorithm,OPT, which computes the optimal solution assuming that the costs are known in advance.
This algorithm’s time and space computation complexity is linear in the number of serversk and
in the algorithm’s duration. While this result has little practical importance, it serves as a baseline
for evaluating the online algorithms described in later sections.

In Section3.4, we study nomadic service assignment as an online optimization problem. A
common metric for an online algorithm is itscompetitive ratio, which is the worst-case ratio be-
tween the cost produced by the algorithm and the optimal cost. We first prove a lower bound of
k on the competitive ratio of any deterministic online assignment algorithm. We then present two
simple online algorithms,DTrack (deficit tracker) andCTrack (cost tracker), parameterized by
policies governingwhentransitions happen andwhichserver is chosen upon a transition.DTrack

transitions from its currently assigned server when the session accumulates “significantly more”
hold cost than it would have paid had it been assigned to some other server, whereasCTrack sim-
ply transitions when the session accumulates “enough” holdcost at the currently assigned server.
We show that when instantiated with certain policies, thesealgorithms achieve competitive ratios
within a constant factor of the lower bound. Specifically, when using a round-robin (RR) policy to
choose the next assignment,DTrack achieves a competitive ratio of2k, i.e., at most twice as bad
as the lower bound, whereasCTrack achieves a competitive ratio of(2 + a)k, wherea is an upper
bound on the ratio between the hold and setup costs.

Although, as our lower bound shows, a worst-case cost ratio that is linear in the number of
servers is inevitable in the general case, achieving such costs is hardly useful for large-scale ser-
vices that employ thousands of servers world-wide. From a practical perspective, it is more in-
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teresting to examine average costs in common scenarios, andmoreover, it is highly desirable for
costs not to increase significantly with the number of servers. We address these practical issues
in Sections3.5 and3.6, via empirical case studies of a WMN with mobile users and an Internet
chatroom with dynamic groups, respectively. Interestingly, the competitive versions ofDTrack
andCTrack, which achieve the best worst-case costs, are not very promising in practice. However,
opportunisticversions of these algorithms, which select the next assignment based on current or
past offered costs (rather than in a round-robin manner), achieve excellent results. Their costs are
at most 50% above the optimum in the average case in the WMN (for a widely accepted random
waypoint mobility model, e.g., [96]), and at most 20% above optimal in the groupware service (for
uniformly distributed users with a Poisson arrival process). More importantly, this ratio, as well as
the total cost, remains almost constant as the problem size scales.

There is a tradeoff between our two algorithms: althoughDTrack achieves better results (lower
overall costs), it has a higher computational time complexity, and requires discovering the hold
costs of a large number of servers every time unit. In contrast, CTrack has a constant per-unit
time complexity, and does not need to probe other servers fortheir costs except when it decides to
transition.

In Section3.5.1, we propose two motion-aware heuristic algorithms, namedTargetAware

andDirectionAware. TargetAware assumes knowledge of the mobile node’s current target and
speed, whereasDirectionAware only requires the knowledge of the node’s current direction,
which is used to estimate the target, and speed. These hints can be received either from a higher-
level application, or from a positioning system like GPS. Although their lookahead window is quite
small (the node’s next target), both motion-aware algorithms yield significant cost improvements.
Their costs are typically within 10% of the optimal, and exhibit perfect scalability.

3.1 Related Work

Handoff optimizations in mobile systems have been extensively studied since the early 1990’s,
mostly in the context of cellular networks with the advent ofthe GSM standard [49, 86, 88]. This
research targeted increasing network capacity as the primary goal. Handoffs in cellular systems
are driven by physical metrics, like signal strength and transmission power, and are handled at
the link layer. They cannot be avoided when user location changes significantly, and optimizing
their cost is a secondary design goal (e.g, [43]). Our work is fundamentally different, because we
consider the network layer and above. In this context, handoffs are optional, they improve the QoS
in the long run, but their cost is substantial. For example, migrating a host connection between two
WMN gateways can affect packet delivery order, and temporarily degrade the TCP performance.

Initial mesh networking research mostly focused on problems that are specific to fixed wire-
less, e.g., defining routing metrics [51], exploiting the broadcast nature of the medium [32], and
harnessing multiple radio interfaces through smart cross-layer design [17]. More recently, Amir
et al. presented a design and implementation of a prototype WMN with mobility support [19].
The algorithms presented in this work can be integrated intosuch a system for inter-gateway hand-
off decisions. Lavi et al. [73] proposed employing an overlay service network for supporting
groupware in mobile networks. Their architecture suggested associating every mobile user with
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the closest server and efficiently maintaining the group membership information between multiple
servers. In contrast with this approach, we focus on applications (including possibly groupware)
that associate a session with a single server.

The problem of dynamic session management was studied in thecontext of routing virtual
circuits in mobile ATM networks [28], with a similar model of setup and hold costs. However,
these costs were defined per link, and the algorithm had to decide whether to retain or to release
a redundant link. This model allowed reusing part of the links after the re-routing, thus allowing
for lower total costs than in our model where no reuse is possible. Indeed, their algorithms exhibit
better competitive behavior than the best possible for nomadic service assignment.

Nomadic service assignment is closely related to the classical metrical task system(MTS)
problem [34]. Since the introduction in the early 1990’s, this problem keeps receiving considerable
attention in the theory community (e.g., see [26, 55] for some new approaches). In this context,
there is a set ofk states, and a matrix of inter-state transition costs (the cost of a self-transition
is zero). A schedule for a sequence of tasks is a sequence of states in which these tasks are
processed. The cost of a schedule is the sum of all task processing (hold) and transition (setup)
costs. For symmetric cost matrices subject to the triangle inequality, there is a deterministic online
algorithm with a competitive ratio of2k − 1, and this bound is tight. Nomadic service assignment
closely resembles a special case of this problem with uniform transition costs, except that in our
problem, the initial assignment always incurs a cost. However, the online MTS algorithm [34]
makes use of the entire history of setup and hold costs until the scheduling decision, which makes
it impractical to implement. We use a very different algorithmic technique, which requiresO(k)
operations per decision, regardless of the history length.In a specific setting of a WMN with
mobile users, in which the hold costs are defined as user–gateway distances, the computation
overhead of our algorithm can be further reduced by an order of magnitude, through the use of
spatial data structures.

Mobile user location, a basic service in wireless networks,is a prerequisite for any network
optimization task, including dynamic session management.Multiple papers treated the mobile
tracking problem in an online fashion, capitalizing on the tradeoff between the accuracy in location
estimation and the number of updates [22, 23, 24, 27]. Part of these works consider stochastic
motion [22, 23] while the others make no assumptions on the mobility model.Some algorithmic
techniques employed in our work bear some resemblance to these papers, since we address the
same competitive analysis framework. However, our problembelongs to a distinct application
domain, and pursues different optimization goals.

Optimal center location for a group of users is an instance ofthe well-studiedfacility location
problem[78], which given a set of facility locations and a set of customers in a metric space,
chooses which customers should be served from which facilities so as to minimize the total service
cost. Facility location was studied as an online problem [77], and was used for various applications,
including optimizing the delivery of Web content in CDN’s [67, 87], maintenance of mobile centers
in ad-hoc networks [30] and adaptive server selection in online games [74]. The problem differs
from ours in that multiple facilities are used per group, andthe online algorithm is allowed toadd
facilities over time, instead of migrating sessions among existing ones.
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3.2 System Model

Consider an application session that can be hosted by any oneof k serversS = {s0, ..., sk−1}.
The session is assigned to some server at the beginning of thesession but can be re-assigned to a
different server at each discrete time slot.

There are two types of non-negative costs charged for the session: asetup costthat is paid when
the session is assigned to a new server, including the initial one, and ahold cost, paid for each time
slot the session is assigned to some server. From a session’sperspective, different servers offer
different costs at a given time slot, and may also change themat the beginning of each slot. We
denote the setup cost offered by servers at timet by setup(s, t) and the hold cost byhold(s, t).

Theassignment scheduleσ(t) in a time intervalI is a function,σ : I → S, which assigns the
session to servers ∈ S at each discrete timet ∈ I. For convenience, we defineσ(t) =⊥ for t 6∈ I.
We define the set oftransitionson an intervalI as

T (σ, I) = {t | t ∈ I ∧ σ(t) 6= σ(t− 1)}.

In particular, the initial assignment is also considered a transition.
The assignment scheduleσ on an interval[t1, t2) incurs a total hold cost

hold(σ, [t1, t2)) ,

t2−1
∑

t=t1

hold(σ(t), t),

a total setup cost
setup(σ, [t1, t2)) ,

∑

t∈T (σ,[t1,t2))

setup(σ(t), t),

and a total overall cost

cost(σ, [t1, t2)) , setup(σ, [t1, t2)) + hold(σ, [t1, t2)).

Theoptimal nomadic service assignmentproblem for interval[0, T ) is to compute an assignment
scheduleσ∗ that minimizescost(σ∗, [0, T )).

The presence of positive setup costs is what makes the problem nontrivial. Otherwise, the
session would always associate with the server that offers the minimum hold cost. Hence, we
always consider positive setup costs.

3.3 An Optimal Offline Algorithm

In this section, we describe an optimalofflinealgorithm for the assignment problem, i.e., assuming
that the setup and hold cost functions are known in advance. The algorithm is linear-time in the
interval lengthT and the number of serversk.

We first identify the structure of the optimal solutionσ∗. Let σ∗
s,t : [t, T )→ S be a lowest cost

schedule among those in whichs is the initial assignment, that is,σ∗
s,t(t) = s. We observe that if
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σ∗
s,t(t+ 1) = s′, then

cost(σ∗
s,t, [t+ 1, T )) = cost(σ∗

s′,t+1, [t+ 1, T )).

In other words, the cost of an optimal schedule for[t + 1, T ) that assignss′ at t + 1 is identical
to the cost of the[t + 1, T )-suffix of the optimal schedule for[t, T ) with the same assignment.
Otherwise, the global optimality is violated. Ifs′ = s, thensetup(s′, t+ 1) does not contribute to
cost(σ∗

s,t, [t, T )).
The problem can be represented as a layered directed acyclicgraph. Nodei in layer t stands

for σ∗
si,t

, for 1 ≤ i ≤ k, 0 ≤ t ≤ T . There is an edge between every pair of nodes(i, t) and
(j, t + 1), which represents a possible transition fromsi to sj at timet. The cost of this edge is
hold(sj, t+ 1) if i = j, andhold(sj, t+ 1) + setup(sj, t+ 1) otherwise. The optimal solution’s
cost is the weight of the shortest path in the graph. While this weight can be computed in linear
time in the number of edges, i.e.,O(k2T ), the time complexity can be optimized toO(kT ), by
exploiting the optimal solution’s structure, as we now explain.

We define thetail contributionfunction fort < T as follows:

tail(s, s′, [t, T )) ,

{

cost(σ∗
s,t, [t, T ))− setup(s, t) if s = s′

cost(σ∗
s′,t, [t, T )) otherwise

Then,cost(σ∗
s,t, [t, T )) for t < T can be expressed as

cost(σ∗
s,t, [t, T )) = setup(s, t) + hold(s, t) + min

s′∈S
tail(s, s′, [t+ 1, T ))

We definetail(s, s′, [T, T )) , cost(σ∗
s,t[T, T )) , 0. For t < T we get:

cost(σ∗
s,t, [t, T )) =

setup(s, t) + hold(s, t) +

min(min
s′∈S

cost(σ∗
s′,t+1, [t+ 1, T )), cost(σ∗

s,t+1, [t+ 1, T ))− setup(s, t+ 1)).

An optimal solution can be computed through dynamic programming [48] using the above recur-
rence. The algorithm employs a two-dimensional tableTable[1..k, 0..T ] where an entryTable[s, t]
holds the value ofcost(σ∗

s,t, [t, T )) and the identity ofs′ = σ∗
s,t(t+ 1). The table is computed col-

umn by column fromT − 1 down to 0. ColumnT is initialized by zeroes. During the processing
of columnt, the value of

min
s′∈S

cost(σ∗
s′,t, [t, T )) = min

1≤s≤k
Table[s, t]

is computed once to be used in computing all entries of columnt − 1. After the whole table is
filled, the overall optimal cost is computed as

cost(σ∗, [0, T )) = min
0≤s≤k−1

Table[s, 0],
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and an optimal schedule is built by tracing the algorithm’s choices through the columns0 . . . T −1.
The computation of a single table entry requires a constant number of operations thanks to

the pre-computation of the previous column’s minimum cost,and therefore, the algorithm’s time
complexity isO(kT ). The space complexity is alsoO(kT ) – the table’s size.

3.4 Online Server Assignment

In a realistic scenario, the costs are not known in advance. This is especially true for the hold cost,
which can reflect dynamic network conditions like user mobility, group membership, etc. In this
section, we study server assignment as anonlineoptimization problem [33]. The cost for a time
slot becomes known at the beginning of that slot, and the algorithm must produce a new scheduling
decision. We restrict ourselves to the case where the setup costs are identical and constant, that
is, setup(s, t) = C for all s andt, whereas the hold costs are dynamic. We denote the schedule
produced by the optimal algorithmOPT asσ∗, and the schedule produced by an online algorithm
ALG asσ.

Thecompetitive ratiois the common performance measure for online algorithms. Inour prob-
lem, an online algorithmALG is calledr(ALG)-competitiveif there is a constantδ such that forall
finite intervalsI and forall setup and hold costs

cost(σ, I) ≤ r(ALG) · cost(σ∗, I) + δ.

The rest of this section is structured as follows. In Section3.4.1, we show that no deterministic on-
line algorithm can achieve a competitive ratio better thank. In Section3.4.2, we present a generic
online algorithm calledDTrack (deficit tracker). A version of this algorithm termedDTrack−RR,
that is,DTrack with round-robin selection of server assignments, achieves a competitive ratio of
2k with a certain parameter choice.DTrack needs to track the cost of up tok servers every time
slot, and may thus have a large control message overhead in a distributed implementation. In Sec-
tion 3.4.3, we present a simple and efficient algorithm calledCTrack (cost tracker), which yields
a competitive ratio of(2 + a)k for a certain parameter choice, assuming that a server’s per-slot
hold cost never exceedsaC. The competitive version ofCTrack, calledCTrack−RR, probes the
cost of only one server every slot. In Section3.4.4, we present opportunistic versions of these
algorithms, calledCTrack−F , DTrack−F , andDTrack−B, which are not competitive but greatly
improve the cost in theaveragecase, and achieve good scalability.

3.4.1 A Lower Bound ofk on the Competitive Ratio

Theorem 3.1. No deterministic server assignment algorithm can achieve acompetitive ratio of
less thank.

Proof. Considerk symmetric servers that offer the same setup costC > 0 and a zero hold cost
each att = 0, that is,hold(si, 0) = 0. Consider the following simple adversary strategy against
any deterministic algorithmALG. WhenALG connects tosi at timet, sethold(si, t+1) = 1. When
ALG disconnects from the server at timet′, sethold(si, t′ + 1) = 0. Regardless of what the online
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algorithm is, it will have to transition to a different server at some point if it wishes to remain
competitive. This process continues untilk − 1 moves happen. At this point, the adversary stops
the run.

If ALG has visited every server exactly once, lets∗ be its last assignment. Otherwise, there
exists a servers∗ that has never been picked byALG. The best offline algorithm,OPT, assigns the
session to servers∗ at time 0 and never changes the assignment.

OPT pays onlyC for the initial setup, whereasALG payskC for setup and zero or more for hold.
Therefore,r(ALG) ≥ kC

C
= k, and the algorithm’s competitive ratio has a lower bound ofk.

3.4.2 DTrack - a2k-Competitive Online Algorithm

We present a simple online algorithm calledDTrack (deficit tracker). It is parameterized by factor
α ≥ 0, which controlswhentransitions happen, and a subroutinenextchoice(), which controls
which server is chosen upon transition. In this section, we focus on a 2k-competitive version of
DTrack, calledDTrack−RR, obtained by a round-robinnextchoice() policy. Its pseudocode
appears in Figure3.1.

We begin with some definitions. Thedeficit between the serverss ands′ during the interval
[τ, t) is the greatest total difference between the total hold costs in a suffix[t′, t):

def(s, s′, [τ, t)) , max
τ≤t′≤t−1

(hold(s, [t′, t))− hold(s′, [t′, t))).

Let us denote the current assignment bysc. A servers for which def(sc, s, [τ, t + 1)) > 0 is
called aleaderat timet.

The algorithm’s code maintains the following variables:t is the current time,τ is the last
transition’s time,c is the current assignment’s id,Leaders is the set of the current leaders’ ids, and
Def is the vector of deficit values betweensc and the other servers. The algorithm maintains that
at timet, Def[s] = def(sc, s, [τ, t+ 1)).

DTrack maintains an invariant that the deficit betweensc and any other servers never exceeds
αC. Initially, DTrack makes an assignment to the server with the minimal hold cost.It then keeps
tracking the deficit versus the other servers. A server becomes a leader when it offers a smaller
hold cost thansc, and stops being one when the cumulative deficit value becomes negative. Since
the hold costs are published at the beginning of each time slot, DTrack makes its decision using
a single-slot lookahead. When some server is about to accumulate significantly less hold cost
than the current choice (a deficit of aboveαC), the algorithm changes its assignment. Due to the
lookahead mechanism, theupdate() procedure that updates the deficit values is invoked twice at
transition times. First, for the current choice in order to decide whether to transition, and then for
the new choice, which does not necessarily offer the best hold cost, hence the new deficit must be
computed.

In the instance ofDTrack we consider now, termedDTrack−RR, nextchoice() selects the
next assignment in a round-robin way, among servers whose a-priori deficit versus any other server
(that is, the hold cost gap) does not exceedαC.

The intuition behindDTrack is that the current server must be provably bad (costingαC more
than the best) in order to change the choice, and the next server must alsonotbe provably bad (not
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1: Initialization:
2: t← 0
3: c← i s.t. hold(si, 0) = mins∈S hold(s, 0)
4: reset()

5: Every time slot do
6: update()
7: if (Def[s] > αC) for somes ∈ Leaders then
8: nextchoice()
9: reset()

10: t← t + 1

11: procedurereset()
12: τ ← t
13: Leaders← ∅
14: for all s 6= sc do
15: Def[s]← 0
16: update()

17: procedureupdate()
18: for all s s.t. s 6∈ Leaders ∧ hold(sc, t) > hold(s, t) do
19: Def[s]← 0
20: Leaders← Leaders∪ {s}
21: for all s ∈ Leaders do
22: Def[s]← Def[s] + hold(sc, t)− hold(s, t)
23: if (Def[s] < 0) then
24: Leaders← Leaders \ {s}

25: procedurenextchoice() /*RR version*/
26: repeat
27: c← (c + 1) mod k
28: until hold(sc, t)−mins∈S hold(s, t) ≤ αC

Figure 3.1:DTrack−RR - an Online Algorithm for Server Assignment.
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costingαC more than any other server). When instantiated withα = 0 (this algorithm is termed
Greedy), DTrack immediately changes the assignment when some other server offers a better hold
cost. At the other extreme, whenα =∞, it never changes its initial assignment. It is clear that the
algorithm is not competitive in either of these extreme cases.

In Section3.7.1, we provide a detailed competitive analysis ofDTrack−RR, and get the fol-
lowing result:

Theorem 3.2.The competitive ratio ofDTrack−RR is bounded as follows:

r(DTrack−RR) < k(1 + 1
α
) 0 < α ≤ 1

r(DTrack−RR) < 1 + (k − 1)α + k α ≥ 1

Corollary 3.1. For α = 1, DTrack−RR achieves a competitive ratio of2k.

The crux of the algorithm’s competitiveness lies in the round-robin selection policy, and can be
informally explained as follows. If we consider a scheduleσ by DTrack−RR thatovertakes(that
is, either leaves or skips) every server while the optimal scheduleσ∗ does not change its assignment
s∗, thenσ overtakess∗ exactly once. This overtake implies that the total hold costincurred byσ∗

during the interval exceedsαC. The total hold cost incurred byσ exceeds the one incurred byσ∗

by at most(k − 1)αC. The subtle point in this proof is the deficit bookkeeping, because upon
transition the hold cost lookahead affects the assignment but does not contribute to the total hold
cost. The total setup cost incurred byσ during this period is at mostkC, whereasσ∗ paysC upon
the assignment tos∗. A careful analysis of the worst-case ratio between the total costs concludes
the proof.

In order to illustrate this result, consider the adversary strategy from Theorem3.1, assuming
α = 1 and an integralC. In this scenario,OPT paysC for the initial setup, whereasDTrack−RR
payskC for setup andkC for hold (accumulating a deficit ofC before each transition). Hence, the
exact competitive ratio of2k is achieved.

3.4.3 CTrack - an Efficient Online Algorithm

At each slot,DTrack checks the hold cost of every server, which results in lineartime complexity
per slot. Since the number of servers can be large, sublinearcomplexity is desirable to achieve
efficiency of communication in a distributed implementation.

We now present a simple online algorithmCTrack (cost tracker), which achieves constant com-
putation time complexity at the expense of a weaker competitive guarantee, under the assumption
of an upper bound on the ratio between the hold and the setup costs.CTrack is also parameterized
by a factorα and a subroutinenextchoice(). Initially, it assigns the server with the minimal hold
cost. The assignment changes when the total hold cost since the last transition exceedsαC (e.g.,
for α = 0, it transitions every time slot). The rationale behind thispolicy is controlling the fraction
of the setup cost in the total cost. It only requires receiving the hold cost of thecurrentassignment
every time slot, which leads to constant per-slot time complexity.

In Section3.7.2, we provide a detailed competitive analysis ofCTrack−RR, the round-robin
version ofCTrack, and get the following result:
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Theorem 3.3. If hold(s, t) ≤ aC for all s andt, thenr(CTrack−RR) < (2 + a)k for α = 1.

3.4.4 Opportunistic Heuristics

While the competitive ratio is an accepted metric for measuring the worst-case performance of an
online algorithm, the average-case performance is more important in practice. An algorithm that
behaves2k times worse than the optimal solution in the average case is impractical in systems
accommodating thousands of servers.

In this section, we introduce opportunistic versions ofCTrack and DTrack, in which
nextchoice() selects an assignment that is locally optimal for some metric, instead of the round-
robin traversal. This approach exploits the well-known locality principle to achieve good perfor-
mance in typical scenarios. Note that although locality is common in practice, it is not a property
that holds in all possible runs, and hence, the cost of using opportunistic selection policies is that
they yield worse competitive ratios than the round-robin ones.

In theforwardheuristicsDTrack−F andCTrack−F , nextchoice() picks the server with the
current minimal hold cost. ThebackwardheuristicDTrack−B augmentsDTrack−RR’s selection
policy with the following rule: the deficit between the next choice and the previous assignment is
greater thanβC for some−∞ ≤ β ≤ α. Using anyβ > 0 allows the algorithm to choose the next
server from those that presented good behavior since the last transition. Forβ = −∞, the resulting
algorithm isDTrack−RR. Forβ = 0, DTrack−B chooses the next server from the leader set. For
β = α, it selects a leader that triggered the transition. Theorem3.2can be generalized to describe
DTrack−B’s worst-case behavior (the proof appears in Section3.7.3):

Theorem 3.4.The competitive ratio ofDTrack−B is bounded as follows:

r(DTrack) < k(1 + 1
α
) α ≤ 1 and β ≤ 0

r(DTrack) < 1 + (k − 1)α+ k α ≥ 1 and β ≤ α− 1

r(DTrack) < 1 + (k−1)α+k
α−β

max(0, α− 1) ≤ β ≤ α

Corollary 3.2. For α = 1 andβ ≤ 0, DTrack−B achieves a competitive ratio of2k.

The worst-case competitive ratio achieved byDTrack−F andDTrack−B with α = β is not
limited by the problem sizek (see Section3.7.4for the proof):

Theorem 3.5.The competitive ratio ofDTrack−F andDTrack−B with α = β is Ω(C).

3.5 Case Study: Mobile Users in a WMN

In this section, we study nomadic service assignment in an urban WMN environment. The results
of the optimal algorithmOPT are used as a comparison baseline. For each algorithmALG, we
measure its cost as well asperformance ratio, which is the average ratio between the total costs
incurred byALG andOPT during multiple runs. We average over 20 simulations, each10,000 slots
long. This metric is analogous to the competitive ratio, thetheoretical worst-case metric.
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Figure 3.2: CTrack−RR and DTrack−RR with α = 1 do not scale well with the network size.

The simulated network spans a square grid with uniformly distributed wireless routers. The
number of routers that populate a1000m× 1000m grid is 100, that is, a single router spans an av-
erage area of100m×100m. A mobile node moves using the random waypoint mobility model [96].
The node uniformly chooses the destination and moves towardit at a constant urban driving speed
of 10 m/sec (36 km/hour). The time slot is one second.

We assume that the wireless infrastructure is the main bottleneck, whereas the gateway re-
sources are abundant, and hence, the end-user QoS is not affected by the congestion among mul-
tiple connections. The hold cost between mobile noden and routerr is defined asd(n,r)

100
, i.e., a

normalized Euclidean (L2) distance. Under these parameters, the average hold cost offered by the
closest router is roughly 0.5. The setup cost is 50.

Our main interest is in the scalability of the online solutions, i.e., how the total cost per second
and the performance ratio are affected as the problem size grows. For this purpose, we gradually
increase the grid size from1000m× 1000m to 5000m× 5000m, and correspondingly increase the
number of routers from 100 to 2500, keeping the router density fixed. We study the performance
of different versions ofCTrack andDTrack with different selections ofα, β, andnextchoice().

Our first goal is to study the performance ofCTrack−RR andDTrack−RR with α = 1, which
have the best proven worst-case ratios. Figure3.2shows that both algorithms scale poorly with the
network size (their costs grow approximately as

√
k, whereasOPT’s cost remains nearly constant).

This is intuitive, since the round-robin selection policy tends to assign a session to a random server,
and the average distance grows asO(

√
k).

DTrack−B requires selecting theβ parameter for a givenα. Contrary to the worst-case anal-
ysis, our results show that the algorithm’s performance improves asβ becomes closer toα. Fig-
ure3.3 depicts the results forα = 1. The curves for allβ values from 0.2 to 1 are barely distin-
guishable. Hence, a good worst case ratio can be guaranteed by selecting smallβ values without
compromising the average performance by much (for example,for α = 1 andβ = 0.2, the com-
petitive ratio is bounded by2.5k − 0.25).

Figures3.4(a) and3.4(b) depict the results of simulating the opportunistic algorithmsGreedy,
CTrack−F , DTrack−F , andDTrack−B with α = 1 andβ = 1. The performance curves of
CTrack−F andDTrack−F are almost indistinguishable. The algorithms’ performance ratios re-
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Figure 3.3: Choosing aβ value for DTrack−B with α = 1.0. The values between 0.2 and 1
exhibit very close behavior and scale well with the network size.

main constant as the problem scales – around 50% above the optimum. The total cost per second
also remains constant, sinceOPT itself is very scalable.Greedy, which takes the opportunistic
heuristic to the extreme, exhibits a weaker performance ratio (more than three times the optimum)
although it scales well. In this setting,Greedy’s reasonable behavior can be explained by the mod-
erate speed (hence, the hold cost changes are slow), and by the moderate setup cost (hence, the
penalty for making a wrong decision is limited). The fact that DTrack−F consistently produces
better results thanDTrack−B can be explained by the motion’s nature. Since the motion is ran-
dom, the deficit values exhibit poor locality. The result could have been different had the motion
happened around a small number of stationary points (home, office, cab station etc).

Figure3.4(c) depicts the results of the same experiment with an average simulated speed 25
m/sec (90 km/hour). In this setting,DTrack−F starts producing a consistently lower total cost
(by 5-6%) thanCTrack−F . This happens because at higher speeds, the hold cost changes faster,
and the total cost becomes a worse transition indicator thanthe deficit. This phenomenon cannot
be further magnified at reasonable driving speeds, but can beclearly demonstrated in a different
application (Section3.6). As expected,Greedy performs worse at higher speeds (above five times
the optimum).

Further simulations (Figure3.5) show thatα values between 0.5 and 2.0 exhibit nearly the
same average-case performance.

DTrack’s computation overhead can be significantly improved in a WMN environment since
the hold cost monotonically increases with distance. Therefore, maintaining the deficit values re-
quires accessing the hold costs of the servers that are closer to the user than the current assignment,
as well as the servers that already have a positive deficit. This can be achieved by using data struc-
tures that support efficient nearest neighbor queries in a multidimensional space like KD-trees or
R-trees [78]. Figure3.6depicts the percentage of hold costs that need to be accessedbyDTrack−F
andDTrack−B with α = β = 1. We can see that the fraction of hold costs that must be accessed
to maintain the positive deficit values is very low.
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Figure 3.4: Scalability of CTrack−F , DTrack−F , and DTrack−B in a WMN with mobile
users,α = 1.0 and β = 1.0.
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Figure 3.5: Scalability of CTrack−F , DTrack−F , and DTrack−B in a WMN with mobile
users, speed=10 m/s, with differentα values.
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Figure 3.6: Percentage of useful hold cost accesses per second forDTrack−F and DTrack−B
with α = 1 and β = 1.
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3.5.1 Motion-Aware Heuristics

In order to achieve a better practical performance, we employ two simple online heuristics tailored
specifically to the mobile user environment. These heuristics exploit the near-term motion pattern,
and therefore can project the hold costs better thanDTrack, which has only a single-slot lookahead.

The first heuristic is calledTargetAware. It requires information regarding the mobile node’s
current target and speed. This target information can be provided from a higher-level system,
e.g., a car navigation system, where the user can indicate the current status (e.g., “driving home”).
TargetAware is informed every time the mobile node changes its target, and appliesOPT as a
subroutine in order to compute the assignment schedule until the next target is reached. Every time
the target changes,TargetAware selects the best of two choices: runningOPT with the fixed first
assignment that is identical to the current one (i.e., no setup cost is incurred for it), or lettingOPT
pick an arbitrary first assignment.

If the target information is not available, a mobile node equipped with a positioning system
(e.g., GPS) can use the direction information provided by it. In this context, we propose the second
heuristic that is calledDirectionAware. It receives information about the grid size as well as the
mobile node’s estimated current direction and speed, whichare received upon the node’s direction
changes. The algorithm projects the next target as the clipping point of its current trajectory and
the grid’s boundary, and appliesTargetAware as a subroutine.

Figure3.7 depicts the scalability of both motion-aware heuristics, in the same environment
as the previous simulation. BothTargetAware and DirectionAware are clearly superior to
CTrack−F andDTrack−F . Their performance ratios are less than 10% and 18% above theop-
timum, respectively. As expected,TargetAware performs slightly better thanDirectionAware
because it uses an accurate motion forecast. The motion-aware heuristics scale even better than
OPT because their lookahead window grows as the grid scales up.

We also evaluatedDirectionAware’s capability to handle inaccurate predictions, by supplying
it with direction estimates that are normally distributed around the real direction with varianceε.
The values ofε ranged from0o (exact prediction) to30o (Figure3.7). As expected, the algorithm’s
performance ratio grows withε. However, this growth is limited by 25% above the optimum, i.e.,
only 7% above the algorithm with a perfect direction forecast. Therefore,DirectionAware is
quite tolerant to moderately inaccurate direction estimates.

Note that both heuristics perform very well despite their small lookahead window. In the con-
text of the offline assignment problem, this means that a practically good solution can be achieved
with constant space complexity, without the need to capturethe entire data stream before running
the dynamic programming algorithm.

3.6 Case Study: Wide-area Chatroom Service

The second environment studied is an Internet-scale groupware application service [73, 74], e.g.,
chat. The service overlay network consists of 100 servers uniformly selected among the nodes
of a random network. Groups of users run a chatroom application, where each group is assigned
to a single server. The users are stationary, and their locations are uniformly distributed in the
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Figure 3.7:Scalability of the motion-aware algorithms in a WMN with mobile users.

network. The user arrival to a group is described by a Poissonprocess with a mean ofλ, and the
membership lifetime is distributed exponentially with a mean ofT (that is, the average number of
users in a group isλT ). The hold cost between groupG and servers is proportional to the maximal
network distance between the server and some node in the group, which reflects the application’s
buffer space requirements affected by the maximal delay. Inthis context, the server is seen as the
group’scenter, and the maximal distance is the group’sradius. We study the same instances of
CTrack−F , DTrack−F , andDTrack−B as in Section3.5 (that is,α = β = 1). We explore the
algorithms’ scalability with both the number of servers andthe average group size.

In the first experiment, we increase the number of servers (inparallel with the network’s size)
from 100 to 2500, without increasing the number of users. We set λ = 0.1 users/second and
T = 30 seconds, yielding three users in the chatroom on average. Figure3.8(a) depicts the sim-
ulation results. Both versions ofDTrack are within 15-20% above the optimal cost.DTrack−F
consistently outperformsCTrack−F because individual join or leave events in a small group trig-
ger fast changes in the hold costs. This is the same phenomenon that happens in WMNs at high
speeds (Figure3.4(c)), but it is more significant since the hold cost changes are faster.

In the second experiment, depicted in Figure3.8(b), we scale the average group size up from
three to 75 (a large-scale conference) by increasing bothλ andT . The network size is not changed.
Both versions ofDTrack exhibit a performance ratio of under 5% above the optimum forgroups
with more than ten members, and converge to the optimal cost as the group scales. This happens
because in dense groups, individual join and leave events donot considerably affect the group
radius. Therefore, the algorithms perform fewer transitions.

Finally, we study the algorithms’ scalability to large groups in large networks. For this purpose,
we gradually increase both the number of servers and the group size by the same factor. The results
depicted in Figure3.8(c) show that when the number of servers grows from 400 to 2500and the
number of users grows from 12 to 75, the performance ratios ofboth versions ofDTrack remain
constant at less than 5% above the optimum, whereas the performance ratio ofCTrack−F also
remains constant but exceeds the optimum by 30%.
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Figure 3.8: Scalability of CTrack−F , DTrack−F and DTrack−B in a wide-area chatroom
application service,α = 1.0 and β = 1.0.

3.7 Analysis

3.7.1 A Competitive Analysis of DTrack-RR

In this section, we give a competitive analysis of the worst-case performance ofDTrack−RR, and
derive the parameter value ofα for which the best competitive ratio is obtained.

Claim 3.1. Let t be a time ands a server. Letτ be the time of the latest transition beforet + 1.
DTrack−RR maintains thatDef[s] = def(sc, s, [τ, t+ 1)).

Proof. Immediate from the code (Lines 14–15 stands for the initialization upon assignment, and
Lines 18–24 stand for the maintenance between assignments).

Lemma 3.1. Let t be a time ands a server. Letτ be the time of the latest transition beforet + 1.
Then,def(σ(τ), s, [τ, t+ 1)) ≤ αC.

Proof. By induction ont. Fort = 0, the claim holds because the server with the minimal hold cost
is selected (Line 3). Fort > 0, if there is no transition att, then the invariant is maintained by the
algorithm’s code (Line 7). Assume that a transition occurs at time t, i.e.,τ = t. By the induction
hypothesis,def(σ(τ ′), s, [τ ′, t)) ≤ αC, whereτ ′ is the previous transition time. However, since a
transition happened att, then for somes, def(σ(τ ′), s, [τ ′, t+1)) > αC. Hence, there exists some
servers such thathold(s, t) < hold(σ(τ ′), t), that is,hold(σ(τ ′), t) is not the minimal hold cost
at timet. Therefore, some identitys 6= σ(τ ′) can be found such thatdef(s, s′, [t, t + 1)) ≤ αC,
for all s′ (Line 28) – e.g., the server with the minimal hold cost att satisfies this requirement.

Corollary 3.3. If nextchoice() is invoked at timet, it returns an identifier that is different from
σ(t− 1).

We term an interval[τ, τ ′) between two consecutive transitions of algorithmALG or between
ALG’s last transition and the end of the run asALG-round. WhereALG is clear from the context,
we simply say round. It is convenient to describe the assignment choices made byDTrack−RR
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Figure 3.9:Definition of phases forDTrack−RR.

with time as a movement in a circular server identifier space,with a clockwise direction froms to
(s + 1) modk. We say thatσ overtakess at timet if s is encountered while moving clockwise
from σ(t− 1) to σ(t), ands 6= σ(t). In other words, eitherσ(t− 1) is s, or s is skipped att.

We now consider aDTrack−RR-round and anALG-round of an arbitrary algorithmALG. We
analyze the competitive ratio ofDTrack−RR for different values ofα by comparing the cost it
incurs with the cost incurred byALG during a singleALG-round[τi, τi+1) and then generalizing for
the whole run. We denoteALG’s schedule byσ′, andALG’s assignment during thisALG-round bys′

(if ALG is OPT, the notations areσ∗ ands∗, respectively).
We define two partitions of the interval[τi, τi+1) into sub-intervals. The first one partitions the

interval tophases{Pi,j = [ti,j , ti,j+1)}, defined as follows. The first phase starts atτi. A phase
completes at the earlier between the time whenσ overtakess′ andτi+1. The second partition is
to shifted phases{−→Pi,j}, defined as follows. The first shifted phase starts atτi. A shifted phase
completes at the earlier between one slot after the completion of the corresponding phase andτi+1.

Figure3.9depicts the above definitions for anOPT-round[10, 30), in whichs∗ = s4. The first
phase ends at time 18 when the algorithm choosess6 and overtakess4, which was its previous
assignment. The second phase ends at time 25 when the algorithm choosess5 and overtakess4 for
the second time, without choosings4 in this phase.

Lemma 3.2. Consider anALG-round[τi, τi+1) with p phases produced byDTrack−RR. Then,

cost(σ, [τi, τi+1)) ≤ hold(σ′, [τi, τi+1)) + pC(k + (k − 1)α)

Proof : Consider aDTrack−RR-round[t, t′) ⊆ Pi,j , and denotes = σ(t).
If s = s′, thenhold(σ′, [t, t′)) = hold(σ, [t, t′)). Otherwise, by the definition ofdef, hold(σ, [t, t′))−

hold(σ′, [t, t′)) ≤ def(s, s′, [t, t′)).By Lemma3.1, def(s, s′, [t, t′)) ≤ αC. Therefore,hold(σ, [t, t′))−
hold(σ′, [t, t′)) ≤ αC. There are at mostk − 1 rounds duringPi,j in which the assignment is dif-
ferent froms′, and hence,

hold(σ,Pi,j)− hold(σ′,Pi,j) ≤ (k − 1)αC.
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DTrack−RR performs at mostk transitions duringPi,j , paying at mostkC for setup. Therefore,

cost(σ,Pi,j) ≤ hold(σ′,Pi,j) + (k − 1)αC + kC.

{Pi,j} is a partition of[τi, τi+1), and hence,

cost(σ, [τi, τi+1)) =

p
∑

j=1

cost(σ,Pi,j) ≤

p
∑

j=1

hold(σ′,Pi,j) + pC(k + (k − 1)α) = hold(σ′, [τi, τi+1)) + pC(k + (k − 1)α).�

Lemma 3.3. Consider anALG-round[τi, τi+1) with p phases produced byDTrack−RR, such that
eitherσ(τi − 1) 6= σ′(τi), or σ(τi) 6= σ′(τi). Then,hold(σ′, [τi, τi+1)) ≥ (p− 1)αC.

Proof : If p = 1, the claim trivially holds because the hold costs are non-negative.
Otherwise, consider a phasePi,j such thatj < p. This phase ends atti,j+1 that is strictly smaller

thanτi+1. We first prove a claim thathold(σ′,
−→Pi,j) > αC. ConsiderDTrack−RR’s assignment

s during the lastDTrack−RR-round[t, ti,j+1) in Pi,j, that is,s = σ(t), andσ overtakess′ at time

ti,j+1. By definition,
−→Pi,j ends at timeti,j+1 + 1. Consider two possible cases:

1. If s 6= s′, then the algorithm considers pickings′ upon the transition froms atti,j+1, and does
not select it because there exists a servers̃ such thathold(s′, ti,j+1)− hold(s̃, ti,j+1) > αC,

and hence,hold(s′, ti,j+1) > αC. By definition of a shifted phase,[ti,j+1, ti,j+1 + 1) ⊆ −→Pi,j.
It follows thathold(σ′,

−→Pi,j) > αC, and the claim holds.

2. Otherwise,s = s′. Since the algorithm transitions froms′ at timeti,j+1, there exists̃s such
thatdef(s′, s̃, [t, ti,j+1+1)) > αC, that is,hold(σ′, [t, ti,j+1+1)) > αC. Assume thatPi,j is
the first phase in[τi, τi+1). Since eitherσ(τi− 1) 6= σ′(τi), orσ(τi) 6= σ′(τi), DTrack−RR’s
assignment tos′ did not happen beforeτi, i.e., t ≥ τi. Hence,[t, ti,j+1 + 1) ⊆ −→Pi,j , by
definition of a shifted phase. Otherwise, consider the preceding phasePi,j−1. By definition,
σ overtakess′ at timeti,j . In particular,σ(ti,j) 6= s′. Since at least one time slot is spent at

every assignment,σ transitions tos′ at timeti,j < t < ti,j+1, that is,[t, ti,j+1 + 1) ⊆ −→Pi,j. It

follows thathold(σ′,
−→Pi,j) > αC, and the claim holds.

It follows thathold(σ′,
−→Pi,j) > αC. {−→Pi,j} is a partition of[τi, τi+1), and therefore,

hold(σ′, [τi, τi+1)) ≥
p−1
∑

j=1

hold(σ′,
−→Pi,j) > (p− 1)αC.�

Lemma 3.4. Consider anALG-round [τi, τi+1), such that eitherσ(τi − 1) 6= σ′(τi), or σ(τi) 6=
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σ′(τi). Then,
cost(σ,[τi,τi+1))
cost(σ′,[τi,τi+1))

< k(1 + 1
α
) α ≤ 1

cost(σ,[τi,τi+1))
cost(σ′,[τi,τi+1))

< 1 + (k − 1)α + k α ≥ 1

Proof : ALG pays the setup costC for a single transition during[τi, τi+1) (at τi), and therefore,

cost(σ′, [τi, τi+1)) = C + hold(σ′, [τi, τi+1)).

Substituting the ratio’s numerator from Lemma3.2, we receive

cost(σ, [τi, τi+1))

cost(σ′, [τi, τi+1))
≤ hold(σ′, [τi, τi+1)) + pC((k − 1)α+ k)

C + hold(σ′, [τi, τi+1))
< 1 +

pC((k − 1)α+ k)

C + hold(σ′, [τi, τi+1))
.

Substituting the denominator from Lemma3.3,

cost(σ, [τi, τi+1))

cost(σ′, [τi, τi+1))
< 1 +

pC(k + (k − 1)α)

C + (p− 1)αC
= 1 +

p((k − 1)α + k)

1 + (p− 1)α
.

We denote%(α, p) , 1+ p(k+(k−1)α)
1+(p−1)α

. In order to computep that produces the maximum ratio for a

givenα, we derive∂%
∂p

. We get that∂%
∂p

= 0 for α = 1, that is, the function is constant whenα = 1:
%(1, p) = 2k for all p. The derivative is strictly positive forα < 1 and strictly negative forα > 1,
therefore, the function is monotonically increasing forα < 1 and monotonically decreasing for
α > 1. Forα < 1,

sup
1≤p<∞

%(α, p) = lim
p→∞

%(α, p) = 1 +
(k − 1)α+ k

α
= k(1 +

1

α
),

whereas forα > 1,
sup

1≤p<∞
%(α, p) = %(α, 1) = 1 + (k − 1)α+ k.�

Theorem 3.2.The competitive ratio ofDTrack−RR is bounded as follows:

r(DTrack−RR) < k(1 + 1
α
) α ≤ 1

r(DTrack−RR) < 1 + (k − 1)α + k α ≥ 1

Proof. We prove the upper bound onDTrack−RR’s competitive ratio for everyOPT-round, and
conclude the same result for the entire run.

Consider the local ratio between the costs incurred byDTrack−RR andOPT during a single
OPT-round[τi, τi+1), that is, cost(σ,[τi,τi+1))

cost(σ∗,[τi,τi+1))
. If eitherσ(τi − 1) 6= σ(τi), or σ(τi − 1) 6= σ(τi), the

claim follows immediately from Lemma3.4. Otherwise,σ(τi − 1) = σ(τi) = σ∗(τi) = s∗. If
DTrack−RR never transitions during theOPT-round, then

cost(σ, [τi, τi+1)) = hold(σ, [τi, τi+1)) = hold(σ∗, [τi, τi+1)) < cost(σ∗, [τi, τi+1)),

and the claim trivially holds. Otherwise, letτi < t < τi+1 be the first time afterτi such that
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σ(t) 6= s∗. Consider a scheduleσ′ that is obtained fromσ∗ by shifting the assignment tos∗ from
τi to t (assume that this schedule is produced by some algorithmALG). Note thathold(σ∗, [τi, t)) =
hold(σ, [τi, t)) ≥ 0, andcost(σ, [t, τi+1)) = cost(σ, [τi, τi+1))−hold(σ, [τi, t)) ≥ cost(σ∗, [τi, τi+1))−
hold(σ, [τi, t)) = cost(σ′, [t, τi+1)) ≥ 0. By applying a well-known inequalitya+x

b+x
≤ a

b
for

0 ≤ b ≤ a andx ≥ 0 to the sought ratio, we get:

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
=

hold(σ, [τi, t)) + cost(σ, [t, τi+1))

hold(σ, [τi, t)) + cost(σ′, [t, τi+1))
≤ cost(σ, [t, τi+1))

cost(σ′, [t, τi+1))
.

. Sinces∗ = σ(t − 1) = σ′(t) 6= σ(t), the bound from Lemma3.4 is applicable to theALG-round
[t, τi+1), and the claim follows.

3.7.2 A Competitive Analysis of CTrack-RR

Theorem 3.3. If hold(s, t) ≤ aC for all s andt, thenr(CTrack−RR) < (2 + a)k for α = 1.

Proof. Consider anOPT-round [τi, τi+1) with p phases produced byCTrack−RR as defined in
Section3.7.1, in whichs∗ is OPT’s choice.

Consider aCTrack−RR round[t, t′) in which servers is CTrack−RR’s choice. Ift < t′ − 1,
then

hold(σ, [t, t′)) = hold(σ, [t, t′ − 1)) + hold(s, t′ − 1) ≤ hold(σ, [t, t′ − 1)) + aC.

hold(σ, [t, t′ − 1)) ≤ αC since no transition happened att′ − 1, and hence,hold(σ, [t, t′)) ≤
(α + a)C. If t = t′ − 1, the same result holds trivially. There arep phases in[τi, τi+1) and at most
k rounds in each phase. Summarizing over allCTrack−RR’s rounds, we get

cost(σ, [τi, τi+1)) ≤ pkC + hold(σ, [τi, τi+1)) ≤ pk(α + a)C + pkC = pk(α+ a + 1)C.

Consider the lastCTrack−RR round[t, t′) in phasePi,j such thatj < p. By definition,s∗ is the
algorithm’s choice in this round. A transition happens, therefore,hold(σ, [t, t′)) > αC. Hence,
hold(σ∗, [t, t′)) > αC. Summarizing over all phases in[τi, τi+1), we get

cost(σ∗, [τi, τi+1)) = C + hold(σ∗, [τi, τi+1)) > (1 + (p− 1)α)C.

Hence,
cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
< k

p(α+ a + 1)

1 + (p− 1)α
.

Forα = 1, this ratio is smaller than(2+a)k for all p. Since this upper bound limits the algorithm’s
competitive ratio for everyOPT-round, we conclude the same result for the entire run.
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3.7.3 A Competitive Analysis of DTrack-B

In this section, we prove the upper bound on the competitive ratio of DTrack−B for arbitraryβ
values. The following lemma is an adaptation of Lemma3.3for DTrack−B.

Lemma 3.5. Consider anALG-round [τi, τi+1) with p phases produced byDTrack−B, such that
eitherσ(τi − 1) 6= σ′(τi), or σ(τi) 6= σ′(τi). Then,

hold(σ′, [τi, τi+1)) ≥ (p− 1)Cmin(α, α− β).

Proof. Like in Lemma3.3, we consider a phasePi,j such thatj < p, which ends atti,j+1. We

first prove a claim thathold(σ′,
−→Pi,j) > max(α, α − β)C. ConsiderDTrack−B’s assignments

during the lastDTrack−B-round [t, ti,j+1) in Pi,j, that is,s = σ(t), andσ overtakess′ at time
ti,j+1. Consider the case whens 6= s′. This happens for one of two reasons:

1. There exists a server̃s such thathold(s′, ti,j+1) − hold(s̃, ti,j+1) > αC, and therefore,

hold(s′, ti,j+1) > αC. [ti,j+1, ti,j+1 + 1) ⊆ −→Pi,j, hence,hold(σ′,
−→Pi,j) > αC, and the claim

follows.

2. def(s, s′, [t, ti,j+1 + 1)) ≤ βC. There exists a server̃s that triggered the transition, and
therefore,def(s, s̃, [t, ti,j+1 + 1)) > αC. Hence,def(s′, s̃, [t, ti,j+1 + 1)) > (α− β)C, that

is, hold(σ′,
−→Pi,j) > (α− β)C, and the claim follows.

The rest of the proof is identical to that of Lemma3.3.

Theorem 3.4.The competitive ratio ofDTrack−B is bounded as follows:

r(DTrack) < 1 + (k − 1)α+ k α ≥ 1 and β ≤ α− 1 (1)
r(DTrack) < k(1 + 1

α
) α ≤ 1 and β ≤ 0 (2)

r(DTrack) < 1 + (k−1)α+k
α−β

max(0, α− 1) ≤ β ≤ α (3)

Proof : Consider the local ratio between the costs incurred byDTrack−RR andOPT during a
singleOPT-round[τi, τi+1). Similarly to the proof of Theorem3.2, we derive

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
< 1 +

p((k − 1)α+ k)

1 + (p− 1) min(α, α− β)
.

We denote%(α, β, p) , 1 + p((k−1)α+k)
1+(p−1) min(α,α−β)

. If min(α, α− β) ≥ 1 (i.e.,α ≥ 1 andα− β ≥ 1),

then the derivative∂%
∂p

is non-negative, and hence,

sup
1≤p<∞

%(α, β, p) = %(α, β, 1) = 1 + (k − 1)α+ k if α ≥ 1 and β ≤ α− 1. (3.1)

If min(α, α− β) ≤ 1, then∂%
∂p

is non-positive, and hence,

sup
1≤p<∞

%(α, β, p) = lim
p→∞

%(α, β, p) = 1 +
(k − 1)α + k

min(α, α− β)
.
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Consider the case whenmin(α, α− β) = α, i.e.,β ≤ 0. Combining this withα ≤ 1, we get:

sup
1≤p<∞

%(α, β, p) = 1 +
(k − 1)α+ k

α
= k(1 +

1

α
) if α ≤ 1 and β ≤ 0. (3.2)

Consider the case whenmin(α, α− β) = α− β, i.e.,β ≥ 0. Combining this withα− β ≤ 1 and
β ≤ α (by definition), we get:

sup
1≤p<∞

%(α, β, p) = 1 +
(k − 1)α + k

α− β if max(0, α− 1) ≤ β ≤ α, (3.3)

and the claim follows. �

3.7.4 Non-Competitiveness of Opportunistic Algorithms

In this section, we show that the opportunistic versions ofDTrack are not competitive, that is, the
worst-case competitive ratio depends onC, rather than on the problem sizek.

Theorem 3.5.The competitive ratio ofDTrack−F andDTrack−B with α = β is Ω(C).

Proof. Assume wlog thatC is a positive integer (otherwise, the theorem can be proved for C ′ =
bCc). Let ε be a small number s.t.0 < ε < α

C+2
. Consider three serverss0, s1 and s2. Let

hold(s2, t) = ε for all t, whereashold(s0, t) andhold(s1, t) are defined as follows for integer
values of0 ≤ i < dC

2
e:

hold(s0, t) =







(2i+ 3)ε t = (2i+ 1)(C + 1)
α 2i(C + 1) < t < (2i+ 1)(C + 1)
0 otherwise

and

hold(s1, t) =







(2i+ 2)ε t = 2i(C + 1)
α (2i+ 1)(C + 1) < t < (2i+ 2)(C + 1)
0 otherwise

The hold costs during the interval[0, 3C+3] are depicted in Figure3.10. Note that for0 ≤ i < dC
2
e,

it holds that(2i+ 3)ε ≤ (C + 2)ε < α. Therefore,hold(s0, t) ≤ α, andhold(s1, t) ≤ α for all t
during this interval.

Lemma 3.6. BothDTrack−F andDTrack−B assigns0 at timest = 2i(C + 1), ands1 at times
t = (2i+ 1)(C + 1), for 0 ≤ i < dC

2
e.

Proof. By induction oni. At time t = 0, both algorithms chooses0 because it offers the minimal
hold cost. The induction step considers two cases:
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Figure 3.10:An example of hold costs for whichDTrack−F and DTrack−B with α = β are
Ω(C)-competitive.

1. t = (2i+1)(C+1). Both algorithms transitioned tos0 at2i(C+1) by induction hypothesis.
We computedef(s0, s1, [2i(C + 1), t)) anddef(s0, s2, [2i(C + 1), t)).

def(s0, s1, [2i(C + 1), (2i+ 1)(C + 1) + 1)) =

−(2i+ 2)ε+ αC + ((2i+ 1) + 2)ε = αC + ε > αC,

whereas

def(s0, s2, [2i(C + 1), (2i+ 1)(C + 1) + 1)) =

−ε+ C(α− ε) + ((2i+ 1) + 2− 1)ε < αC − ε(C − (2i+ 1)) ≤ αC.

Note that bothdef(s0, s1, [2i(C + 1), t′) anddef(s0, s2, [2i(C + 1), t′) are strictly smaller
thanαC for t′ < t. Therefore, the transition happens at(2i + 1)(C + 1) for the first time
since2i(C + 1).

2. t = (2i+ 2)(C + 1). This case is proved analogously to the previous one.

Upon every transition,DTrack−F selects the server with the zero hold cost, i.e.,s0 at times2i(C+
1), ands1 at timest = (2i + 1)(C + 1). DTrack−B selects the server that achieves the largest
deficit, i.e., it makes the same choice.

Consider a run ofDTrack−F andDTrack−B during the interval[0, C2 − 1). Both algorithms
behave identically. They transitionC times during this interval (att = i(C+1), for 0 ≤ i ≤ C−1).
Hence, the total setup cost isC2. The total hold cost exceedsαC2 since a hold cost of aboveαC is
incurred between every two transitions. Hence, the total cost during the interval exceeds(α+1)C2.
In the same setting,OPT selectss2 at t = 0 and never changes its assignment, thus paying a total
setup cost ofC and a total hold cost ofε(C2 − 1) < αC. Hence, the competitive ratio of both
online algorithms isΩ(C).
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Chapter 4

The Load-Distance Balancing Problem

The increasing demand for real-time access to networked services is driving service providers to
deploy multiple geographically dispersed service points,or servers. This trend can be observed
in various systems, such as content delivery networks (CDNs) [63] and massively multiplayer
online gaming (MMOG) grids [42]. Another example can be found in wireless mesh networks
(WMNs) [16]. A WMN is a large collection of wireless routers, jointly providing Internet access
in residential areas with limited wireline infrastructurevia a handful of wired gateways. WMNs
are envisaged to provide citywide “last-mile” access for numerous mobile devices running media-
rich applications with stringent quality of service (QoS) requirements, e.g., VoIP, VoD, and online
gaming. Gateway functionality is anticipated to expand, and to deploy application server logic [16].

Employing distributed servers instead of centralized server farms enables location-dependent
QoS optimizations, which enhance the users’ soft real-timeexperience. Service responsiveness is
one of the most important QoS parameters. For example, in thefirst-person shooter (FPS) online
game [42], the system must provide an end-to-end delay guarantee of below 100ms. In VoIP,
the typical one-way delay required to sustain a normal conversation quality is below 120ms [58].
Such guarantees are nontrivial to implement in mesh networks, due to multiple hops and a limited
number of gateways.

Deploying multiple servers gives rise to the problem ofservice assignment, namely associating
each user session with a server or gateway. For example, eachCDN user gets its content from
some proxy server, a player in a MMOG is connected to one game server, and the Internet traffic
of a WMN user is typically routed via a single gateway [16]. In this context, we identify the
need to model the service delay of a session as a sum of anetwork delay, incurred by the network
connecting the user to its server, and acongestion delay, caused by queueing and processing at
the assigned server. Due to the twofold nature of the overalldelay, simple heuristics that either
greedily map every session to the closest server, or spread the load evenly regardless of geography
do not work well in many cases. In this work, we present a novelapproach to service assignment,
which is based on both metrics. We call the new problem, whichseeks to minimize the service
delay among all users,load-distance balancing, or LDB.

In this chapter, we address theLDB problem in a centralized setting. The problem, which is
precisely defined in Section5.2, seeks to minimize the service delay among all users, and hastwo
flavors: (1)maximumdelay minimization and (2)averagedelay minimization. We demonstrate
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that the min-maxLDB problem is both NP-hard and non-approximable within the factor of two for
general distance and load functions (Section4.3.1), and present the best possible 2-approximation
algorithm (Section4.3.2). For a special case when the users and the servers are located on a line
segment, and the network delays are Euclidean distances, wedemonstrate a polynomial dynamic-
programming algorithm for this problem (Section4.3.3). Following this, we present a polyno-
mial algorithm for the min-averageLDB, which applies for convex load functions, and finally,
a dynamic-programming solution for the linear setting which has an improved time complexity
(Section4.4.2).

4.1 Related Work

Load-distance balancing is an extension of the load balancing problem, which has been com-
prehensively addressed in the context of tightly coupled systems like multiprocessors, compute
clusters etc. (e.g., [25]). However, in large-scale networks, simple load balancing is insufficient
because servers are not co-located. While some prior work [42, 63] indicated the importance of
considering both distance and load in wide-area settings, we are not aware of any study that pro-
vides a cost model that combines these two metrics and can be analyzed.

While a centralized approach is feasible for small-scale environments, it cannot scale to large
networks, e.g., city-wide WMNs. We therefore seek forlocal distributedsolutions, which spread
as few information as possible for achieving thedesiredapproximation of the optimal solution.
Chapter5 explores this approach for the min-maxLDB problem, and demonstrates how centralized
optimization algorithms can serve as local building blocksfor scalable distributed solutions.

4.2 Problem Definition

Consider a set ofk serversS and a set ofn user sessionsU . The network delayfunction,D :
(U × S) → R

+, captures the network distance between a user and a server. The users and the
servers do not necessarily reside in a metric space (i.e.,D is not necessarily subject to the triangle
inequality).

Consider an assignmentλ : U → S that maps every user to a single server. Each servers has
a monotonic non-decreasingcongestion delayfunction,δs : N→ R

+, reflecting the delay it incurs
to every assigned session. For simplicity, all users incur the same load. Different servers can have
different congestion delay functions. The service delay∆(u, λ) of sessionu in assignmentλ is the
sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(|{v : λ(v) = λ(u)}|).

Note that our model does not include congestion within the network. Typically, application-
induced congestion bottlenecks tend to occur at the serversor the last-hop network links, which
can be also attributed to their adjacent servers. For example, in a CDN [63], the assignment of
users to content servers has a more significant impact on the load on these servers and their access
links than on the congestion within the public Internet. In WMNs, the effect of load on wireless
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links is reduced by flow aggregation [58], which is applied for increasing the wireless capacity
attainable for real-time traffic. The last-hop infrastructure, i.e., the gateways’ wireless and wired
links, is mostly affected by network congestion [16].

The min-maxLDB problem is defined as follows. The cost of an assignmentλ is themaximum
delay it incurs on a user:

∆M(λ(U)) , max
u∈U

∆(u, λ).

The optimization goal is to find an assignmentλ∗ such that∆M(λ∗(U)) is minimized.
The min-averageLDB problem is defined as follows. The cost of an assignmentλ is thetotal

delay incurred by it:
∆T (λ(U)) ,

∑

u∈U

∆(u, λ).

In this context, the optimization goal goal is to find an assignmentλ∗ such that∆T (λ∗(U)) is
minimized.

4.3 Min-Max Load-Distance Balancing

This chapter studies the min-maxLDB problem. We first analyze its computational complexity
(Section4.3.1), and present the best possible approximation algorithm for general cost functions
(Section4.3.2). Following this, we present an efficient polynomial algorithm for a special case in
which network distances are captured by a linear Euclidean metric (Section4.3.3).

4.3.1 Computational Hardness

We first prove that the min-maxLDB optimization problem is NP-hard. This result stems from the
hardness of the decision variation ofLDB, denotedLDB−D. In this context, the problem is to decide
whether delay∆∗ is feasible, i.e., whether there exists an assignmentλ such that∆M(λ(U)) ≤ ∆∗.

In what follows, we prove the show a reduction from theexact set cover(XSC) problem [6].
An instance ofXSCis a collectionS of subsets over a finite setU . The solution is a set cover for
U , i.e., a subsetS ′ ⊆ S such that every element inU belongs to at least one member ofS ′. The
decision problem is whether there is a cover such that each element belongs to precisely one set in
the cover.XSCis NP-hard even if all subsets inS have the same size.

Theorem 4.1.TheLDB−D problem is NP-hard.

Proof. Consider an instance ofXSCin which |U | = n, |S| = k, and each set contains exactlym
elements, such thatn

m
< k. The problem is therefore whether there is a cover containing n

m
sets.

The transformation of this instance to an instance ofLDB−D is as follows. In addition to the
elements inU , we define a setU ′ of M(k − n

m
) dummy elements, whereM > m. We construct a

bipartite graph (Figure4.1), in which the one side contains the elements inU
⋃

U ′ (the users), and
the other side contains the sets inS (the servers). The dummy users are at distanced1 from each
server. The real users are at distanced2 > d1 from each server that covers them, and at distance∞
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Figure 4.1:Reduction from exact set cover to LDB-D.

from all the other servers. The capacity of each server for distanced1 isM , and for distanced2 is
k, i.e.,δ−1

s (∆∗ − d1) = M , andδ−1
s (∆∗ − d2) = m.

A feasibleXSCsolution induces a feasibleLDB assignment: each real user is assigned to a
server representing the unique set that covers the corresponding element, and the dummy users are
evenly spread among the remainingk − n

m
servers. We argue that no other feasible assignment

exists. Consider a server utilized by a feasibleλ. It can accommodate eitherM dummy users, or
any combination of0 < m′ ≤ m original users andm −m′ dummy users (any other assignment
incurs a delay above∆∗ to some user). Assume that both real and dummy users are assigned to at
least one server. Then, the total number of servers that havereal users assigned to them isk′ > n

m
.

All these servers have capacitym, and hence, they serve at mostmk′ − n dummy users. The
remaining servers can hostM(k − k′) dummy users. Hence, the total number of assigned dummy
users is bounded byM(k− k′)+mk′−n = M(k− n

m
)−M(k′− n

m
)+m(k′− n

m
) < M(k− n

m
),

that is, the assignment is not feasible. Hence, exactlyn
m

servers must be allocated to real users,
thus solving theXSCinstance.

A slight modification of the above proof demonstrates that even a2− ε approximation ofLDB
is NP-hard, for an arbitrarily smallε. In this context, thec-approximateLDB−D is to decide, given
the delay∆∗, whether there exists an assignmentλ such that∆M(λ(U)) ≤ c∆∗, for somec > 1.

Theorem 4.2.The(2− ε)-approximateLDB−D is NP-hard, for allε > 0.

Proof. We construct a bipartite user-server graph, identically tothe proof of Theorem4.1. The
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Figure 4.2: The bipartite graph for a single phase ofBFlow.

congestion delay function is uniform among all servers:

δ(i) =







∆∗ − d2 if i ≤ m

∆∗ − d1 if m ≤ i ≤M

∞ otherwise

It is easy to verify that a feasibleXSCsolution induces a feasibleLDB assignment.
Suppose we letd1 = ε andd2 = ∆∗ − ε. If an element is not a member of a set, the distance

to that server is infinite. If there is no solution for exact cover, i.e., any collection ofn
m

sets leaves
some element uncovered, the corresponding real user will have to be assigned to a server that is also
hostingM−1 dummy users. The delay experienced by this user is thusd2+(∆∗−d1) = 2(∆∗−ε).
Therefore, theXSC problem reduces to a(2− ε)-approximateLDB−D.

Note, however, that the distance function considered in theproof does not satisfy the triangle
inequality. Indeed, since each dummy user is connected to all servers, the distance between any
pair of servers does not exceed2d1. Hence, it is impossible for the distance between any real user
and some server to exceed2d1 + d2, and in particular, it cannot be infinite - a contradiction.

Claim 4.1. There exists a distance function subject to the triangle inequality, for which a 5
3
-

approximateLDB−D is NP-hard.

Proof. We consider the same graph as the proof of Theorem4.1, and choosed1 = ∆∗

3
andd2 = ∆∗.

The distance of a real user to a server is either∆∗ or 2d1 + d2 = 5
3
∆∗. If there is no solution to

exact cover, then the best solution can have delay no lower than 5
3
∆∗.

4.3.2 BFlow – a 2-Approximation Algorithm

In this section, we present a simple algorithm, calledBFlow, which computes a 2-approximate
solution for min-maxLDB. By Theorem4.3.1, this is also the best possible approximation for
general distance functions.

BFlow works in phases. In each phase, the algorithm guesses∆∗ = ∆M(λ∗(U)), and checks
the feasibility of a specific assignment, in which neither the network nor the congestion delay
exceeds∆∗, and hence, its cost is bounded by2∆∗. BFlow performs a binary search on the value
of ∆∗. A single phase works as follows:
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1. Each useru marks all serverss that are at distanceD(u, s) ≤ ∆∗. These are its feasible
servers.

2. Each servers announces how many users it can serve by computing the inverse of δs(∆∗).

3. We have a generalized matching problem where an edge meansthat a server is feasible for
the user. The degree of each user in the matching is exactly one, and the degree of servers
is at mostδ−1

s (∆∗). A feasible solution, if one exists, can be solved via a max-flow min-cut
algorithm in a bipartite user-server graph with auxiliary source and sink vertices. Figure4.2
depicts an example of such a graph.

Theorem 4.3.BFlow computes a 2-approximation of an optimal assignment for min-maxLDB.

Proof. Consider an optimal assignmentλ∗ with cost∆∗. It holds that∆1 = maxuD(u, λ∗(u)) ≤
∆∗, and∆2 = maxs δs(L(s)) ≤ ∆∗. A phase ofBFlow that tests an estimate∆ = max(∆1,∆2)
is guaranteed to find a feasible solution with cost∆′ ≤ ∆1 + ∆2 ≤ 2∆∗.

Since there are at mostkn distinctD values, the number of the binary search phases that
attributes to covering all of them is logarithmic inn. The number of phases that attributes to
covering all the possible capacities of servers isO(log δs(n)), which is at linear inn or below for
any reasonableδs. Hence,BFlow is a polynomial algorithm.

4.3.3 Optimal Assignment on a Line with Euclidean Distances

In this section, we consider the case when the users and the servers are located on a line segment
[0, L], and the network delays are Euclidean distances. We show that min-maxLDB is polynomially
solvable in this model through dynamic programming.

We start with some definitions. For simplicity of presentation, we assume that every user or
serveri has a distinct locationxi. The distance between useru and servers is thereforeD(u, s) =
|xs − xu|. Assignmentλ is calledorder-preservingif for every pair of usersu1 andu2 such that
xu1

< xu2
it holds thatxλ(u1) < xλ(u2). Otherwise, bothλ and every pair(u1, u2) for which this

condition does not hold are calledorder-violating.
Every order-preserving assignment partitions the line into a series of non-overlapping segments

such that every user within segmenti is assigned to serversi. Segmenti is located to the left from
segmentj iff i < j. Note thatsi does not necessarily located inside segmenti.

Theorem 4.4.The min-maxLDB problem on a line has an order-preserving optimal assignment.

Proof. Consider an order-violating assignmentλ. We show how it can be transformed into an
order-preserving assignment that incurs smaller or equal cost.

Sinceλ is order-violating, there exists a pair of usersu1 andu2 assigned to serverss2 ands1

such thatxu1
< xu2

but xs2 > xs1 . We transformλ to a new assignmentλ′ from by switching
the assignments ofu1 andu2, i.e.,λ′(u1) = s1 andλ′(u2) = s2. Since this switch does not affect
the load ons1 ands2, no change is incurred to any user’s processing delay. Therefore, only the
network delays incurred tou1 andu2 are affected. We therefore need to show thatλ′ does not incur
greater maximum network delay values thanλ, that is,
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Figure 4.3: Switching the assignment of an order-violating pair(u1, u2).

Claim 4.2. It holds thatmax(D(u1, s1), D(u2, s2)) ≤ max(D(u1, s2), D(u2, s1)).

Proof : Consider the following cases:

1. xu1
< xu2

< xs1 < xs2 (Figure4.3(a)). Then,D(u1, s1) < D(u1, s2) andD(u2, s2) <
D(u1, s2), hence,max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

2. xu1
< xs1 < xu2

< xs2 (Figure4.3(b)). Then,D(u1, s1) < D(u1, s2) andD(u2, s2) <
D(u1, s2), hence,max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

3. xs1 < xu1
< xu2

< xs2 (Figure4.3(c)). Then,D(u1, s1) < D(u2, s1) andD(u2, s2) <
D(u1, s2), hence,max(D(u1, s1), D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

4. xs1 < xu1
< xs2 < xu2

. Symmetric to case (2).

5. xs1 < xs2 < xu1
< xu2

. Symmetric to case (1). �

This way, we switch the assignment of every order-violatingpair of users until eventually an order-
preserving assignment is achieved.

It follows that every optimal assignment for min-maxLDB is either order-preserving, or can be
transformed into an order-preserving assignment that incurs an equal service delay.

We now identify the recursive structure of an optimal assignmentλ∗. Let λ∗i,j for 1 ≤ i ≤ n

and1 ≤ j ≤ k be an optimal assignment for users{ui, . . . , un} that employs servers{sj, . . . , sk}.
We can assignl = 0, . . . , n − i + 1 leftmost users to serversj. This assignment defines the
maximum delay among the leftmost users. From the optimalityof λ∗i,j, the assignmentλ∗i+l,j+1 of
the remaining users to the remaining servers is also an optimal one. Hence,

∆M(λ∗i,j) = min
0≤l≤n−i+1

[max(δsj
(l) + max

0≤l′<l
|xsj
− xui+l′

|,∆M(λ∗i+l,j+1))], (4.1)
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The boundary conditions are:∆M(λ∗n+ 1, j) = 0 (no users), and∆M (λ∗i, k + 1) = ∞ (no
servers), for1 ≤ i ≤ n and1 ≤ j ≤ k. The global optimal assignment cost is∆M (λ∗(U, S)) =
∆M(λ∗1,1).

Optimal assignments can be computed through dynamic programming [48], using the above
recurrence. An optimal algorithm employs a two-dimensional tableTable[1..n+1, 1..k+1], where
an entryTable[i, j] holds the value of∆M(λ∗i,j), and the number of users assigned tosj. Note that

max
0≤l′<l

|xsj
− xui+l′

| = max(|xsj
− xui

|, |xsj
− xui+l−1

|),

and hence, the computation of a single entryTable[i, j] incursO(1) operations for each examined
entryTable[i + l, j + 1]. A naive implementation examinesO(n) such entries, an therefore, the
time complexity of filling the whole table isO(kn2). This result can be improved by noting that
Eq. (4.1) defines a min-max among the value pairs offi,j(l) = δsj

(l) + max0≤l′<l |xsj
− xui+l′

| (a
non-decreasing function ofl) andgi,j(l) = ∆M(λ∗i+l,j+1) (a non-increasing function ofl). Hence,
the min-max is achieved for the value ofl for which fi,j(l) − gi,j(l) is closest to zero. It can be
efficiently found through binary search, which yieldsO(logn) operations for a single table entry,
andO(kn logn) operations altogether.

4.4 Min-Average Load-Distance Balancing

We now demonstrate an efficient polynomial-time algorithm for min-averageLDB assignment, and
an alternative solution for the linear case, which has an improved running time.

4.4.1 The Optimal Algorithm

Assumption: We assume that for each servers, the functionxδs(x) is convex (most practical
congestion delay functions satisfy this requirement).

The algorithm reduces the assignment problem to minimum-cost matching in a bipartite graph.
The left part containsn users, and the right part containsn copies of each server (i.e.,nk nodes).
The cost of connecting useru to thei’th instance of servers is defined as

∆i(u, s) = D(u, s) + iδs(i)− (i− 1)δs(i− 1).

Intuitively, these costs aremarginalcosts in the assignment, that is,∆i(u, s) is the cost of connect-
ing useru to servers afteri− 1 other users.

The algorithm computes a minimum-cost matching in the constructed graph (i.e., each user is
assigned to exactly one server copy), and turns this matching into a legal assignment by assigning
each user to the server it is matched to, regardless of the instance number.

Theorem 4.5.The algorithm computes an optimal assignment for min-averageLDB.

Proof. We first claim that if the copysi of servers is utilized by the matching, then all the copies
sj for j ≤ i are used too. Indeed, suppose by contradiction that useru is matched to some copysi
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(i > 1), andsi−1 is not used. Ifu is switched fromsi to si−1, the matching cost can be reduced by

∆i(u, s)−∆i−1(u, s) = iδs(i) + (i− 2)δs(i− 2)− 2δs(i− 1),

which is a positive value sincexδs(x) is a convex function. Hence, the matching’s cost can be
improved, in contradiction to optimality.

Consider a matchingµ in the bipartite graph for which the set of used instances of each server
is contiguous, and the corresponding assignmentλ for the original problem. We denote the set of
users assigned to some instance of servers byµ(s), and the user assigned to thei’th copy of server
s by µi(s). Since the used copy set is contiguous, the sum of individualmatching cost of the users
in µ(s) telescopes to

∑|µ(s)|
i=1 ∆i(µi(s), s) = |µ(s)|δs(|µ(s)|) +

∑|µ(s)|
i=1 D(µi(s), s)

=
∑|µ(s)|

i=1 [D(µi(s), s) + δs(|µ(s)|)]
=

∑

u:λ(u)=s ∆(u, λ).

Hence, the matching’s cost is equal to the cost of an assignment for the original problem.
Therefore, since the minimum-cost matchingµ∗ has the desired instance continuity property, it
produces a minimum-cost assignmentλ∗.

4.4.2 Improving the Running Time on a Line with Euclidean Distances

The fastest known minimum-cost flow algorithm on a graphG(V,E) runs inO(|E| log |V |(|E|+
|V | log |V |)) time [83]. We construct a bipartite graph in which|V | = O(nk) and|E| = O(kn2),
hence the running time isO(kn2 log(nk)(kn2 + nk log(nk))) = O(k2n4 logn). In a special case
when users and servers are located on a line segment, and network delays are modeled as Euclidean
distances, this running time can be significantly improved.Similarly to the min-maxLDB problem,
the min-averageLDB on a line has an order-preserving optimal assignment. Hence, a polynomial
time dynamic programming algorithm similar to the one presented in Section4.3.3is applicable in
this case. The algorithm’s running time isO(kn2) (in contrast to the min-maxLDB, it cannot apply
the binary search optimization to reduce the number of operations on a single table entry tolog n).
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Chapter 5

Scalable Load-Distance Balancing

Chapter4 introduced a novelload-distance balancingproblem, orLDB, which arises in the con-
text of assigning multiple users of delay-sensitive network applications to geographically scattered
servers in a way that minimizes the delays incurred to these users. The service-level delay is af-
fected by network distances as well as by server loads. Hence, computing an assignment that
minimizes this delay requires to consider both factors together. For example, straightforward ap-
proaches like always assigning every user to the closest server or spreading all users evenly across
random servers produce unsatisfactory results, since theycannot adapt to varying distributions of
location among the users.

Resource management problems in which a naı̈ve local assignment leads to suboptimal results
are often solved centrally. For example, Cisco wireless local area network (WLAN) controllers [1]
perform global optimization in assigning wireless users toaccess points (APs), after collecting the
signal strength information from all managed APs. While this approach is feasible for medium-size
installations like enterprise WLANs, its scalability may be challenged in large networks like an ur-
ban WMN. For large-scale network management, a distributedprotocol with local communication
is required.

We observe, however, that load-distance-balanced assignment cannot always be done in a com-
pletely local manner. For example, if some part of the network is heavily congested, then a large
number of servers around it must be harnessed to balance the load. In extreme cases, the whole
network may need to be involved in order to dissipate the excessive load. A major challenge is
therefore to provide anadaptivesolution that performs communication to a distance proportional
to that required for handling the given load in each problem instance. We address this challenge,
drawing inspiration from workload-adaptive distributed algorithms [31, 72].

In Section5.3, we present two distributed algorithms for load-distance balancing,Tree and
Ripple, which adjust their communication requirements to the congestion distribution, and pro-
duce constant approximations of the optimal cost.Tree andRipple dynamically partition the user
and server space intoclusterswhose sizes vary according to the network congestion, and solve the
problem in a centralized manner within every such cluster.Tree does this by using a fixed hier-
archy of clusters, so that whenever a small cluster is over-congested and needs to offload users,
this cluster is merged with its sibling in the hierarchy, andthe problem is solved in the parent
cluster. WhileTree is simple and guarantees a logarithmic convergence time, itsuffers from two
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drawbacks. First, it requires maintaining a hierarchy among the servers, which may be difficult
in a dynamic network. Second,Tree fails to load-balance across the boundaries of the hierarchy.
To overcome these shortcomings, we present a second distributed algorithm,Ripple, which does
not require maintaining a complex infrastructure, and achieves lower costs and better scalability,
through a more careful load sharing policy. The absence of a fixed hierarchical structure turns
out to be quite subtle, as the unstructured merges introducerace conditions. In Appendices5.5.1
and5.5.2we prove thatTree andRipple always converge to solutions that approximate the opti-
mal one within a constant factor. For simplicity, we presentboth algorithms for a static workload.
In Section5.5.3, we discuss how they can be extended to cope with dynamic workloads.

We note that even as a centralized optimization problem, themin-max variation ofLDB that
seeks minimizing themaximumdelay is NP-hard, as we showed in Chapter4. Therefore,Tree and
Ripple employ a centralized polynomial 2-approximation algorithm, BFlow, within each cluster.
The details ofBFlow were presented in Section4.3.2.

Finally, we empirically evaluate our algorithms using a case study in an urban WMN envi-
ronment (Section5.4). Our simulation results show that both algorithms achievesignificantly
better costs than naı̈ve nearest-neighbor and perfect load-balancing heuristics (which are the only
previous solutions that we are aware of), while communicating to small distances and converging
promptly. The algorithms’ metrics (obtained cost, convergence time, and communication distance)
are scalable and congestion-sensitive, that is, they depend on the distribution of workload rather
than the network size. The simulation results demonstrate aconsistent advantage ofRipple in the
achieved cost, due to its higher adaptiveness to user workload.

5.1 Related Work

Load-distance balancing is an extension of the well-studied load balancing problem (e.g., [25]).
In contrast with distributed algorithms for traditional load balancing (e.g., [61]), our solutions
explicitly use the cost function’s distance-sensitive nature to achieve locality.

A number of papers addressed geographic load-balancing in cellular networks and wireless
LANs (e.g., [29, 52]), and proposed local solutions that dynamically adjust cell sizes. While the
motivation of these works is similar to ours, their model is constrained by the rigid requirement that
a user can only be assigned to a base station within its transmission range. Our model, in which
network distance is part of cost rather than a constraint, isa better match for wide-area networks
like WMNs, CDNs, and gaming grids. Dealing with locality in this setting is more challenging
because the potential assignment space is very large.

Workload-adaptive server selection was handled in the context of CDNs, e.g., [63]. In contrast
with our approach, in which the servers collectively decideon the assignment, they chose a differ-
ent solution, in which users probe the servers to make a selfish choice. The practical downside of
this design is a need to either install client software, or torun probing at a dedicated tier, e.g., [56].

Local solutions of network optimization problems have beenaddressed starting from [81], in
which the question “what can be computed locally?” was first asked by Naor and Stockmeyer.
Recently, different optimization problems have been studied in the local distributed setting, e.g.,
Facility Location [79], Minimum Dominating Set and Maximum Independent Set [70]. While
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some papers explore the tradeoff between the allowed running time and the approximation ratio
(e.g., [79]), we take another approach – namely, the algorithm achieves agivenapproximation ra-
tio, while adapting its running time and communication distance to the workload. Similar methods
have been applied in related areas, e.g., fault-local self-stabilizing consensus [72], and local dis-
tributed aggregation [31]. For example, in [72], only a close neighborhood of the compromised
nodes participates in the failure recovery process.

5.2 Definitions and System Model

For completeness of presentation, we define the min-maxLDB problem (in this context,LDB for
brevity). This definition also appears in Chapter4.

Consider a set ofk serversS and a set ofn user sessionsU , such thatk � n. Thenetwork
delayfunction,D : (U×S)→ R

+, captures the network distance between a user and a server. The
users and the servers do not necessarily reside in a metric space (i.e.,D is not necessarily subject
to the triangle inequality).

Consider an assignmentλ : U → S that maps every user to a single server. Each servers has
a monotonic non-decreasingcongestion delayfunction,δs : N→ R

+, reflecting the delay it incurs
to every assigned session. For simplicity, all users incur the same load. Different servers can have
different congestion delay functions. The service delay∆(u, λ) of sessionu in assignmentλ is the
sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(|{v : λ(v) = λ(u)}|).

The cost of an assignmentλ is themaximumdelay it incurs on a user:

∆M(λ(U)) , max
u∈U

∆(u, λ).

The goal is to find an assignmentλ∗ such that∆M(λ∗(U)) is minimized. An assignment that yields
the minimum cost is calledoptimal. This problem is NP-hard (Chapter4). Our optimization goal
is therefore to find a constant approximation algorithm for this problem. We denote the problem
of computing anα-approximation forLDB asα−LDB.

We solve theα−LDB problem in a failure-free distributed setting, in which servers can com-
municate directly and reliably. The set of server congestion functions{δs} is known to all servers.
The network delay functionD is known as well, i.e., given a user’s location, the network distance
between this user and any one of the servers can be computed. However, the location of each user
is initially known only to the closest server, i.e., the location information is not globally available.

We concentrate on synchronous protocols, whereby the execution proceeds in phases. In each
phase, a server can send messages to other servers, receive messages sent by other servers in the
same phase, and perform local computation. This form of presentation is chosen for simplicity,
since in our context synchronizers can be used handle asynchrony (e.g., [21]).

Throughout the protocol, every server knows which users areassigned to it. At startup, every
user is assigned to the closest server (this is called aNearestServer assignment). Servers can
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then exchange the user information, and alter this initial assignment. Eventually, the following
conditions must hold: (1) the assignment stops changing; (2) all inter-server communication stops;
and (3) the assignment solvesα−LDB for a givenα.

In addition to the cost, in the distributed case we also measure for each individual server its
convergence time(the number of phases that this server is engaged in communication), andlocality
(the number of servers that it communicates with).

5.3 Distributed LD-Balanced Assignment

In this section, we present two synchronous distributed algorithms,Tree andRipple, for α−LDB
assignment. These algorithms use as a black box a centralized algorithmALG (e.g.,BFlow (Chap-
ter 4) which computes anrALG-approximation for a given instance of theLDB problem. They are
also parametrized by therequiredapproximation ratioα, which is greater or equal torALG. Both
algorithms assume some linear ordering of the servers,S = {s1, . . . , sk}. In order to improve
communication locality, it is desirable to employ a locality-preserving ordering (e.g., a Hilbert
space-filling curve on a plane [82]), but this is not required for correctness.

Both Tree andRipple partition the network into non-overlapping zones calledclusters, and
restrict user assignments to servers residing in the same cluster (we call theseinternal assign-
ments). Every cluster contains a contiguous range of servers with respect to the given ordering.
The number of servers in a cluster is called thecluster size.

Initially, every cluster consists of a single server. Subsequently, clusters can grow through
merging. The clusters’ growth is congestion-sensitive, i.e., loaded areas are surrounded by large
clusters. This clustering approach balances between a centralized assignment, which requires col-
lecting all the user information at a single site, and the nearest-server assignment, which can pro-
duce an unacceptably high cost if the distribution of users is skewed. The distance-sensitive nature
of the cost function typically leads to small clusters. The cluster sizes also depend onα: the larger
α is, the smaller the constructed clusters are.

We call a valueε, such thatα = (1 + ε)rALG, the algorithm’sslack factor. A cluster is called
ε-improvablewith respect toALG if the cluster’s cost can be reduced by a factor of1 + ε by har-
nessing all the servers in the network for the users of this cluster alone. Note thatε-improvability
is a locally computable property, i.e., the information required for its computation is confined to
the locations of users within the cluster, and the locationsand congestion functions of the servers
outside it (a small-scale shared information).ε-improvability provides a local bound on how far
this cluster’s current cost can be from the optimal cost achievable withALG. Specifically, if no clus-
ter isε-improvable, then the current local assignment is a(1 + ε)-approximation of the centralized
assignment withALG. A cluster containing the entire network is vacuously non-improvable.

Within each cluster, a designatedleader server collects full information, and computes the
internal assignment. Under this assignment, a cluster’scost is defined as the maximum service
delay among the users in this cluster. Only cluster leaders engage in inter-cluster communication.
The distance between the communicating servers is proportional to the larger cluster’s diameter.
When two or more clusters merge, a leader of one of them becomes the leader of the union.Tree
andRipple differ in their merging policies, i.e., which clusters can merge (and which leaders can
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communicate for that).

5.3.1 Tree - a Simple Distributed Algorithm

We present a simple algorithm,Tree, which employs afixed binary hierarchy among servers.
Every server belongs to level zero, every second server belongs to level one, and so forth (that is,
a single server can belong to up todlog2 ke levels). Fori ≥ 0 andl > 0, serveri × 2l is a level-l
parentof servers2i× 2l−1 (i.e., itself) and(2i+ 1)× 2l−1 at levell − 1.

The algorithm proceeds in rounds. Initially, every clusterconsists of a single server. During
roundl > 0, the leader of every cluster created in the previous round (i.e., a server at levell − 1)
checks whether its cluster isε-improvable. If it is, the leader sends a merge request to itsparent
at levell. Upon receiving this request from at least one child, the parent server merges all its de-
scendants into a single cluster, i.e., collects full information from these descendants, computes the
internal assignment usingALG, and becomes the new cluster’s leader. Collecting full information
during a merge is implemented through a sending a query from the level-l leader to all the servers
in the new cluster, and collecting the replies.

A single round consists of three synchronous phases: the first phase initiates the process with a
“merge” message (from a child to its parent), the second disseminates the“query” message (from
a leader to all its descendants), and the third collects the“reply” messages (from all descendants
back to the leader). Communication during the last two phases can be optimized by exploiting the
fact that a server at levell − 1 that initiates the merge already possesses full information from all
the servers in its own cluster (that is, half of the servers inthe new one), and hence, this information
can be queried by its parent directly from it. If the same server is both the merge initiator and the
new leader, this query can be eliminated altogether.

Figure5.1(a) depicts a sample clustering ofTree where 16 servers reside on a4×4 grid and are
ordered using a a Hilbert curve. The small clusters did not grow because they were not improvable,
and the large clusters were formed because their sub-clusters were improvable. Note that the size
of each cluster is a power of 2.

Tree guarantees that noε-improvable clusters remain at the end of some round1 ≤ L ≤
dlog2 ke, and all communication ceases. We conclude the following (the proof appears in Sec-
tion 5.5.1):

Theorem 5.1. (Tree’s convergence and cost)

1. If the last communication round is1 ≤ L ≤ dlog2 ke, then there exists anε-improvable
cluster of size2L−1. The size of the largest constructed cluster ismin(k, 2L).

2. The final (stable) assignment’s cost is anα-approximation of the optimal cost.

In Section5.4, we conduct a case study which demonstrates that in practice, Tree’s averagecon-
vergence time and cluster size remain nearly constant with the network’s growth.

Tree has some shortcomings. First, it requires maintaining a hierarchy among all servers.
Second, the use of this static hierarchy leads it to make sub-optimal merges. For example, a loaded
cluster may have an unloaded neighbor on one side, but the rigid hierarchy causes it to merge with
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Figure 5.1:Example workloads for the algorithms and clusters formed bythem in a 4×4 grid
with Hilbert ordering. (a) A sample clustering {A,B,C,D,E} produced byTree. (b) A hard
workload for Tree: 2N users in cell 8 (dark gray), no users in cell 9 (white), andN users in
every other cell (light gray). (c) A sample clustering{A,B,C,D,E} produced byRipple.

neighbors on the other side, which are also loaded, and hencereduce its cost less. Figure5.1(b)
shows an example workload on the network in Figure5.1(a). The congestion delay of each server is
zero for a load belowN+1, and infinite otherwise. Assume that cell 8 contains2N users (depicted
dark gray in the figure), cell 9 is empty of users (white), and every other cell containsN users (light
gray). An execution ofTree eventually merges the whole graph into a single cluster, forany value
of ε, because no clustering ofs1, . . . , s8 that achieves the maximum load of at mostN (and hence,
a finite cost) exists. Therefore, due to the rigid hierarchy,the algorithm misses the opportunity to
merges8 ands9 into a single cluster, and solve the problem within a small neighborhood.

5.3.2 Ripple - an Adaptive Distributed Algorithm

Ripple, a workload-adaptive algorithm, remedies the shortcomings of Tree by providing more
flexibility in the choice of the neighboring clusters to merge with. UnlikeTree, in which anε-
improvable cluster always expands within a pre-defined hierarchy, inRipple, this cluster tries to
merge only with neighboring clusters ofsmallercosts. This typically results in better load-sharing,
which reduces the cost compared to the previous algorithm. The clusters constructed byRipple
may be therefore highly unstructured (e.g., Figure5.1(c)). The elimination of the hierarchy also
introduces some challenges and race conditions between requests from different neighbors.

Section5.3.2makes some formal definitions and presentsRipple at a high level. The algo-
rithm’s technical details are provided in Section5.3.2. Section5.3.2claimsRipple’s properties;
their formal proofs appear in Section5.5.2.

Overview

We introduce some definitions. A cluster is denotedCi if its current leader issi. The cluster’s cost
and improvability flag are denoted byCi.cost andCi.imp, respectively. Two clustersCi andCj
(1 ≤ i < j ≤ k) are calledneighborsif there exists anl such that serversl belongs to clusterCi
and serversl+1 belongs to clusterCj . ClusterCi is said todominateclusterCj if:

1. Ci.imp = true, and
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Message Semantics Size
〈“probe”,id,cost,imp〉 Assignment summary (cost andε-improvability) small, fixed
〈“propose”,id〉 Proposal to join small, fixed
〈“accept”,id,λ,nid〉 Accept to join, includes full assignment information large, depends on #users

Constants Value
L, R, Id 0, 1, the server’s id

Variable Semantics Initial value
LeaderId the cluster leader’s id Id

Λ the internal assignment NearestServer

cost the cluster’s cost ∆M (NearestServer)
NbrId[2] the L/R neighbor cluster leader’s id {Id− 1, Id+ 1}
ProbeSent[2] “probe“ to L/R neighbor sent? {false, false}
ProbeRecv[2] “probe“ from the L/R neighbor received? {false, false}
ProposeRecv[2] “propose“ from L/R neighbor received? {false, false}
ProbeFwd[2] need to forward“probe“ to L/R? {false, false}
Probe[2] need to send“probe“ to L/R in the next round? {true, true}
Propose[2] need to send“propose“ to L/R? {false, false}
Accept[2] need to send“accept“ to L/R? {false, false}

Table 5.1:Ripple’s messages, constants, and state variables.

2. (Ci.cost, Ci.imp, i) > (Cj.cost, Cj.imp, j), in lexicographic order (imp and cluster index
are used to break ties).

Ripple proceeds in rounds, each consisting of four synchronous phases. During a round, a cluster
that dominates some (left or right) neighbor tries to reduceits cost by inviting this neighbor to
merge with it. A cluster that dominates two neighbors can merge with both in the same round.
A dominated cluster can only merge with a single neighbor andcannot split. When two clusters
merge, the leader of the dominating cluster becomes the union’s leader.

Dominance alone cannot be used to decide about merging clusters, because the decisions made
by multiple neighbors may be conflicting. It is possible for acluster to dominate one neighbor and
be dominated by the other neighbor, or to be dominated by bothneighbors. The algorithm resolves
these conflicts by uniform coin-tossing. If a cluster leaderhas two choices, it selects one of them
at random. If the chosen neighbor also has a conflict and it decides differently, no merge happens.
When no cluster dominates any of its neighbors, all communication stops, and the assignment
remains globally stable.

The algorithm guarantees that in every round in which communication happens, the number of
clusters decreases by at least one. Moreover, since the firstround in which no cluster leader sends
a message, all communication stops.

Detailed Description

In this section, we presentRipple’s technical details. Table5.1 provides a summary of the pro-
tocol’s messages, constants, and state variables. See Figure 5.3 for the pseudo-code. We assume
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(a) Simultaneous probe:
s1 ands2 send messages in Phase 1.
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(b) Late probe:

s2 sends message in Phase 2.

Ö×ØÙÚÛÜ ÛÝ ÛÞÖ×ØÙÚßàáâãäåæäæçèßàáâã äåæäæçèéêêãßë ìíîïðñìíîïðòìíîïðóìíîïðô
(c)⇐⇐ conflict resolution:
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(d)⇒⇐ conflict resolution:
s2 acceptss1 and rejectss3.
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(e) Probe forwarding:

s2 forwards tos1, s3 forwards tos4.

Figure 5.2:Ripple’s scenarios. Nodes in solid frames are cluster leaders. Dashed ovals encir-
cle servers in the same cluster.

the existence of local functionsALG : (U, S) → λ, ∆M : λ → R
+, andimprovable : (λ, ε) →

{true, false}, which compute the assignment, its cost, and the improvability flag.
In each round, neighbors that do not have each other’s cost and improvability data exchange

“probe” messages with this information. Subsequently, dominatingcluster leaders send“propose”
messages to invite others to merge with them, and cluster leaders that agree respond with“accept”
messages with full assignment information. More specifically, a round consists of four phases:

Phase 1 - probe initiation.A cluster leader sends a“probe” message to neighbori if Probe[i]
istrue (Lines 4–5). Upon receiving a probe from a neighbor, if the cluster dominates this neighbor,
the cluster’s leader schedules a proposal to merge (Line 50), and also decides to send a probe to
the neighbor in this direction in the next round (Line 52). Ifthe neighbor dominates the cluster,
the cluster’s leader decides to accept the neighbor’s proposal to merge, should it later arrive (Line
51). Figure5.2(a) depicts a simultaneous mutual probe. If neither of two neighbors sends a probe,
no further communication between these neighbors occurs during the round.

Phase 2 - probe completion.If a cluster leader does not send a“probe” message to some
neighbor in Phase 1 and receives one from this neighbor, it sends a late“probe” in Phase 2 (Lines
13–14). Figure5.2(b) depicts this late probe scenario. Another case that is handled during Phase
2 is probe forwarding. A“probe” message sent in Phase 1 can arrive to a non-leader due to a
stale neighbor id at the sender. The receiver then forwards the message to its leader (Lines 17–18).
Figure5.2(e) depicts this scenario: servers2 forwards a message froms1 to s4, ands3 forwards a
message froms4 to s1.

Phase 3 - conflict resolution and proposal.A cluster leader locally resolves all conflicts,
by randomly choosing whether to cancel the scheduled proposal to one neighbor, or to reject the
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expected proposal from one neighbor (Lines 56–65). Figures5.2(c) and5.2(d) illustrate the reso-
lution scenarios. The rejection is implicit: simply, no“accept” is sent. Finally, the leader sends
“propose” messages to one or two neighbors, as needed (Lines 26–27).

Phase 4 - acceptance.If a cluster leader receives a proposal from a neighbor and accepts this
proposal, then it updates the leader id, and replies with an“accept” message with full information
about the current assignment within the cluster, includingthe locations of all the users (Line 35).
The message also includes the id of the leader of the neighboring cluster in the opposite direction,
which is anticipated to be the new neighbor of the consuming cluster. If the neighboring cluster
itself is consumed too, then this information will be stale.The latter situation is addressed by
the forwarding mechanism in Phase 2, as illustrated by Figure 5.2(e). At the end of the round, a
consuming cluster’s leader re-computes the assignment within its cluster (Lines 67–69). Note that
a merger does not necessarily improve the assignment cost, since a local assignment procedureALG

is not an optimal algorithm. If this happens, the assignmentwithin each of the original clusters
remains intact. If the assignment cost is reduced, then the new leader decides to send a“probe”
message to both neighbors in the next round (Lines 70–71).

Ripple’s Properties

We now discussRipple’s properties. Their proofs appear in Section5.5.2.

Theorem 5.2. (Ripple’s convergence and cost)

1. Within at mostk rounds ofRipple, all communication ceases, and the assignment does not
change.

2. The final (stable) assignment’s cost is anα-approximation of the optimal cost.

Note that the theoretical upper bound on the convergence time is k despite potentially conflict-
ing coin flips. This bound is tight (see Section5.5.2). However, the worst-case scenario is not
representative. Our case study (Section5.4) shows that in realistic scenarios,Ripple’s average
convergence time and cluster size remain flat as the network grows.

For some workloads, we can proveRipple’s near-optimal locality, e.g., when the workload
has a single congestion peak:

Theorem 5.3. (Ripple’s locality) Consider a workload in which serversi is the nearest server
for all users. LetC be the smallest non-ε-improvable cluster that includessi. Then, the size of
the largest cluster constructed byRipple is at most2|C| − 1, and the convergence time is at most
|C| − 1.

An immediate generalization of this claim is that if the workload is a set of isolated congestion
peaks that have independent local solutions, thenRipple builds these solutions in parallel, and
stabilizes in a time required to resolve the largest peak.
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1: Phase 1{Probe initiation} :
2: for all dir ∈ {L, R} do
3: initState(dir)
4: if (LeaderId = Id ∧ Probe[dir]) then
5: send 〈“probe“, Id, cost, improvable(Λ, ε)〉

to NbrId[dir]
6: ProbeSent[dir]← true

7: Probe[dir]← false

8: for all received 〈“probe“, id, cost, imp〉 do
9: handleProbe(id, cost, imp)

10: Phase 2{Probe completion} :
11: if (LeaderId = Id) then
12: for all dir ∈ {L, R} do
13: if (¬ProbeSent[dir] ∧ ProbeRecv[dir])

then
14: send 〈“probe“, Id, cost, improvable(Λ, ε)〉

to NbrId[dir]
15: else
16: for all dir ∈ {L, R} do
17: if (ProbeFwd[dir]) then
18: sendthe latest“probe” to LeaderId

19: for all received 〈“probe“, id, cost, imp〉 do
20: handleProbe(id, cost, imp)

21: Phase 3{Conflict resolution and proposal} :
22: if (LeaderId = Id) then
23: resolveConflicts()

24: {Send proposals to merge}
25: for all dir ∈ {L, R} do
26: if (Propose[dir]) then
27: send 〈“propose“, Id〉 to NbrId[dir]

28: for all received 〈“propose“, id〉 do
29: ProposeRecv[direction(id)]← true

30: Phase 4{Acceptance or rejection} :
31: for all dir ∈ {L, R} do
32: if (ProposeRecv(dir) ∧ Accept[dir]) then
33: {I do not object joining with this neighbor}
34: LeaderId← NbrId[dir]
35: send 〈“accept′′, Id, Λ, NbrId[dir]〉 to LeaderId

36: for all received 〈“accept“, id, λ, nid〉 do
37: Λ← Λ ∪ λ; cost← ∆M (Λ)
38: NbrId[direction(id)]← nid

39: if (LeaderId = Id) then
40: computeAssignment()

41: procedureinitState(dir)
42: ProbeSent[dir]← ProbeRecv[dir]← false

43: Propose[dir]← Accept[dir]← false

44: ProbeFwd[dir]← false

45: procedurehandleProbe(id, cost, imp)
46: dir← direction(id)
47: ProbeRecv[dir]← true

48: NbrId[dir]← id
49: if (LeaderId = Id) then
50: Propose[dir]←

dominates(Id, cost, improvable(Λ, ε), id, cost, imp)

51: Accept[dir]←
dominates(id, cost, imp, Id, cost, improvable(Λ, ε))

52: Probe[dir]← Propose[dir]
53: else
54: ProbeFwd[dir]← true

55: procedureresolveConflicts()
56: { Resolve⇐⇐ or⇒⇒ conflicts}
57: for all dir ∈ {L, R} do
58: if (Propose[dir] ∧ Accept[dir]) then
59: if (randomBit() = 0) then
60: Propose[dir]← false

61: else
62: Accept[dir]← false

63: {Resolve⇒⇐ conflict}
64: if (Accept[L] ∧ Accept[R]) conflictsthen
65: Accept[randomBit()]← false

66: procedurecomputeAssignment()
67: Λ′ ← ALG(Users(Λ), Servers(Λ))
68: if (∆M (Λ′) < ∆M (Λ)) then
69: Λ← Λ′; cost← ∆M (Λ′)
70: for all dir ∈ {L, R} do
71: Probe[dir]← true

72: function dominates(id1, cost1, imp1,
id2, cost2, imp2)

73: return (imp1 ∧
(imp1, cost1, id1) > (imp2, cost2, id2))

74: function direction(id)
75: return (id < Id) ? L : R

Figure 5.3:Ripple’s pseudo-code: single round.
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5.4 Numerical Evaluation

In this section, we employTree andRipple for gateway assignment in an urban WMN, using
the BFlow centralized algorithm (Chapter4) for local assignment. We compare our algorithms
with NearestServer. Due to lack of space, we omit the results of comparison with perfect load-
balancing, which performs much worse thanNearestServer.

The WMN provides access to a real-time service (e.g., a network game). The mesh gateways,
which are also application servers, form a rectangular grid. This topology induces a partitioning
of the space into cells. The wireless backbone within each cell is a 16 × 16 grid of mesh routers,
which route the traffic either to the gateway, or to the neighboring cells. The routers apply flow
aggregation [58], thus smoothing the impact of network congestion on link latencies. Each wireless
hop introduces an average delay of 6ms. The congestion delayof every gateway (in ms) is equal
to the load. For example, consider a workload of 100 users uniformly distributed within a single
cell, under theNearestServer assignment. With high probability, there is some user closeto the
corner of the cell. The network distance between this user and the gateway is is 16 wireless hops,
incurring a network delay of16× 6ms ≈ 100ms, and yielding a maximum service delay close to
100 + 100 = 200ms (i.e., the two delay types have equal contribution).

Every experiment employs a superposition of uniform and peaky workloads. We call a normal
distribution with varianceR around a randomly chosen point on a plane acongestion peak. R is
called theeffective radiusof this peak. Every data point is averaged over 20 runs. For instance, the
maximal convergence time in the plot is an average over all runs of the maximal convergence time
among all servers in individual runs.

Sensitivity to slack factor We first consider a 64-gateway WMN (this size will be increased
in the next experiments), and evaluate how the algorithms’ costs, convergence times, and locality
depend on the slack factor. The workload is a mix of a uniform distribution of 6400 users with
6400 additional users in ten congestion peaks with effective radii of 200m. We consider values of
ε ranging from 0 to 2. The results show that bothTree andRipple significantly improve the cost
achieved byNearestServer (Figure5.4(a)). For comparison, we also depict the theoretical cost
guarantee of both algorithms, i.e.,(1+ ε) times the cost ofBFlow with global information. We see
that forε > 0, the algorithms’ costs are well below this upper bound.

Figure5.4(b) demonstrates how the algorithms’ convergence time (in rounds) depends on the
slack factor. Forε = 0 (the best possible approximation), the whole network eventually merges
into a single cluster. We see that although theoreticallyRipple may require 64 rounds to converge,
in practice it completes in 8 rounds even with minimal slack.As expected,Tree converges in
log2 64 = 6 rounds in this setting. Note that forε = 0, Tree’s average convergence time is also
6 rounds (versus 2.1 forRipple) because the algorithm employs broadcasting that involvesall
servers in every round. Both algorithms complete faster asε is increased.

Figure5.4(c) depicts how the algorithms’ average and maximal clustersizes depend onε. The
average cluster size does not exceed 2.5 servers forε ≥ 0.5. The maximal size drops fast asε
increases. Note that for the same value ofε, Ripple builds slightly larger maximal-size clusters
thanTree, while the average cluster size is the same (hence, most clusters formed byRipple are
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smaller). This reflectsRipple’s workload-adaptive nature: it builds bigger clusters where there
is a bigger need to balance the load, and smaller ones where there is less need. This will become
more pronounced as the system grows, as we shall see in the next section.

Sensitivity to network size Next, we exploreTree’s andRipple’s scalability with the network
size, forε = 0.5 and the same workload as in the previous section. We gradually increase the
number of gateways from 64 to 1024. Figure5.5 depicts the results in logarithmic scale. We see
that thanks toRipple’s flexibility, its cost scales better thanTree’s, remaining almost constant
with the network growth (Figure5.5(a)). Note thatNearestServer becomes even more inferior
in large networks, since it is affected by the growth of the expectedmaximumload among all cells
as the network expands.

Figure5.5(b) and Figure5.5(c) demonstrate thatRipple’s advantage in cost does not entail
longer convergence times or less locality: it converges faster and builds smaller clusters thanTree.
This happens becauseTree’s rigid cluster construction policy becomes more costly asthe network
grows (the cluster sizes in the hierarchy grow exponentially).

Sensitivity to user distribution We study the algorithms’ sensitivity to varying workload pa-
rameters, like congestion skew and the size of congested areas, forε = 0.5. We first compare
the cost ofTree, Ripple andNearestServer on different partitions of 12800 users between the
uniform and peaky distributions, the latter consisting of ten peaks of effective radius 200m each
(Figure5.6(a)). For a uniform workload, all the algorithms achieve equal cost, becauseTree and
Ripple start from the nearest-server assignment and cannot improve its cost. For increasingly
peaky workloads, the cost of the distributed local algorithms remains almost flat (Ripple is con-
sistently better), whileNearestServer fails to adapt to the skew.

Following this, we compareTree, Ripple andNearestServer on a workload of 12800 users
concentrated in ten peaks of varying radius500m ≤ R ≤ 5000m (see Figure5.6(b)). For large
values ofR, this workload approaches to the uniform one, and consequently, NearestServer
achieves a better cost than for more peaky distributions. Like previously,Ripple achieves a lower
cost thanTree.

In both experiments, the average convergence time and average cluster size remain low and al-
most constant as the workload becomes more peaky (below 2.3 rounds and 2.7 servers per cluster).
The respective maximal metrics grow withp andR, which demonstrates that both algorithms build
larger clusters and converge slower as the population peaksbecome more congested. As before,
Ripple’s maximal convergence time and maximal cluster size are slightly larger thanTree’s, due
to its load-sensitive nature.

5.5 Analysis and Extensions

5.5.1 Correctness and Performance Analysis of Tree

In this section, we prove that theTree algorithm converges inO(log k) rounds and computes an
rALG(1 + ε) approximation of the optimal cost for a local assignment procedureALG. For conve-

54



0 0.2 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

Slack factor (ε)

C
os

t

Ripple(ε)
Tree   (ε)
NearestServer
(1+ε)BFlow

(a) Cost

0 0.2 0.5 1 1.5 2
0

2

4

6

8

10

12

Slack factor (ε)

C
on

ve
rg

en
ce

 ti
m

e 
(r

ou
nd

s)

Ripple(ε), maximal
Ripple(ε), average
Tree   (ε), maximal
Tree   (ε), average

(b) Convergence time (maximal/average)

0 0.2 0.5 1 1.5 2
0

10

20

30

40

50

60

70

Slack factor (ε)

C
lu

st
er

 s
iz

e

Ripple(ε), maximal
Ripple(ε), average
Tree   (ε), maximal
Tree   (ε), average

(c) Cluster size (maximal/average)

Figure 5.4: Sensitivity of Tree(ε)’s and Ripple(ε)’s cost, convergence time (rounds), and
locality (cluster size) to the slack factor, for mixed user workload: 50%uniform/50%peaky
(10 peaks of effective radius 200m).
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Figure 5.5:Scalability of Ripple(0.5) and Tree(0.5) with the network’s size (log-scale), for
mixed workload: 50% uniform/50% peaky (10 peaks of effective radius 200m).

nience, we assume that the initial clusters are formed by thealgorithm during roundi = 0.

Theorem 5.1. (Tree’s convergence and cost)

1. If the last communication round is1 ≤ L ≤ dlog2 ke, then there exists anε-improvable
cluster of size2L−1. The size of the largest constructed cluster ismin(k, 2L).

2. The final (stable) assignment’s cost is anα-approximation of the optimal cost.

Proof :

1. It is straightforward that the algorithm runs for at mostdlog2 ke rounds. If the last commu-
nication round isL > 1, then some server sent a“merge” message at the beginning of this
round. By the algorithm, this server must be a leader of anε-improvable cluster of size2L−1.

2. Consider clusterC that has the highest cost when communication stops. The costof this
cluster is alsoTree’s assignment cost, because the optimization goal is a min-max user cost.
Either this is the only cluster in the network, or it is notε-improvable. In the first case, the
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Figure 5.6:Sensitivity of Tree(0.5)’s and Ripple(0.5)’s cost to user distribution. (a) Varying
percent of users in congestion peaks, mixed workload: (100-p)% uniform/p% peaky (10
peaks of effective radius 200m),0 ≤ p ≤ 100. (b) Varying effective radius of congestion
peaks, mixed workload: 50% uniform/50% peaky (10 peaks of effective radiusR, 500m ≤
R ≤ 5000m).

assignment’s cost is smaller or equal to the cost of a centralized solutionALG, whereas in
the second case, the assignment’s cost is at most(1 + ε) timesALG’s cost. In all cases, the
algorithm’s approximation factor is bounded byα = rALG(1 + ε). �

5.5.2 Correctness and Performance Analysis of Ripple

In this section, we prove that theRipple algorithm converges inO(k) rounds and computes an
rALG(1 + ε) approximation of the optimal cost for a local assignment procedureALG. Following
this, we proveRipple’s locality property, that is, if the workload contains a single congestion
peak, then the algorithm does not expand the cluster around it further than required to dissipate the
load.

Lemma 5.1. Consider two neighboring cluster leadersC or C ′, such thatC.Id < C ′.Id. If either
of them sends a“probe” message to the other in Phase 1 of some roundi ≥ 1, then by the end of
Phase 2 of the same round:

1. C.NbrId[R] = C ′, andC ′.NbrId[L] = C.

2. C andC ′ receive“probe” messages from each other.

Proof : By induction oni. If i = 1, then every cluster includes a single server, theNbrId vector is
updated to its predecessor and successor in the linear order, and the“probe” messages are sent in
both directions sinceProbe[L] = Probe[R] = true. Hence, these messages arrive by the end of
Phase 1. Ifi > 1, consider three possible cases:

1. C andC ′ were neighbors in roundi− 1. Then, claim (1) follows from the induction hypoth-
esis. Consider a leader (e.g.,C) that sends the message in Phase 1. Hence, it arrives by the
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end of this phase. IfC ′ does not send a“probe” in Phase 1, it does so in Phase 2 (Lines
13–14), and claim (2) follows.

2. C andC ′ were separated by a single clusterC̃ in roundi− 1. Hence, eitherC orC ′ merged
with C̃ (e.g.,C). By the induction hypothesis, after Phase 2 of roundi−1, C̃.NbrId[R] = C ′.
This information appears in the“accept” message sent bỹC to C (Line 35), and hence, at
the end of Phase 4 of roundi−1,C.NbrId[R] = C ′. Analogously,C ′.NbrId[L] = C. Claim
(2) follows as in the previous case.

3. C andC ′ were separated by two clusters,C̃ andC̃ ′ in roundi− 1. Then,C merged withC̃,
andC ′ merged withC̃ ′, and they updated their neighbor pointers as follows:C.NbrId[R] =
C̃ ′, andC.NbrId[L] = C̃. By the algorithm, bothC andC ′ send“probe” messages to each
other in roundi. These messages arrive tõC ′ andC̃, respectively, which forward them to
their correct destinations in Phase 2 (Lines 17–18). When these messages are received, the
neighbor information is updated. �

Lemma 5.2. Since the first round in which no cluster leader sends a message, all communication
stops.

Proof. Since no“probe” messages are sent in this round, it holds thatProbe[L] = Probe[R] =
false in every cluster leader at the beginning of the round. These values do not change since no
communication happens, and hence, no message is sent in the following rounds, by induction.

We say that clusterC wishesto merge with clusterC if it either proposesC ′ to merge, or is
ready to accept a proposal fromC ′.

Lemma 5.3. If there is a roundi since which the leaders of two neighboring clustersC andC ′ do
not send messages to each other, then neither of these clusters dominates the other starting from
this round.

Proof. SinceC andC ′ do not communicate in roundi, the following conditions hold:

1. Neither ofC andC ′ dominates the other at the beginning of roundi− 1 (lines 54–55).

2. Neither ofC andC ′ reduces its cost at the end of roundi− 1 (lines 49–51).

The first condition implies one of the following two cases:

1. NeitherC norC ′ is ε-improvable. This property cannot change in future rounds.

2. One cluster (e.g.,C) is ε-improvable, but its cost is smaller or equal the neighbor’scost. By
the algorithm, neither cluster’s cost grows in roundi − 1, and hence, both costs remain the
same.

Therefore, neitherC norC ′ dominates its neighbor at the end of roundi, and this property holds
by induction.
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Consequently, by the end of Phase 2, both neighbors possess the same probe information. Hence,
the values ofPropose andAccept are evaluated correctly, and the“propose” and“accept” mes-
sages arrive to their destinations directly in a single phase.

Lemma 5.4. In every round except the last one when communication happens, the number of
clusters decreases by at least one.

Proof. Consider a round in which some communication happens. By Lemma 5.3, at least one
cluster dominates its neighbor in the previous round. Assume that no mergers occur in this round
nevertheless. Consider a cluster leaderC that wishes to merge with its right (resp., left) neighbor
C ′. Then necessarilyC ′ wishes to merge with its own right (resp., left) neighbor, and fails too,
since no mergers occur. By induction, the rightmost (resp.,leftmost) cluster leader wishes to join
its right (resp., left) neighbor - a contradiction.

Theorem 5.2. (Ripple’s convergence and cost)

1. Within at mostk rounds ofRipple, all communication ceases, and the assignment does not
change.

2. The final (stable) assignment’s cost is anα-approximation of the optimal cost.

Proof :

1. Assume that some message is sent in roundi ≥ k. Then, at least one message is sent
during every roundj < i, because otherwise, by Lemma5.2, all communication would
cease starting from the first round in which no messages are sent. By Lemma5.4, at least
one merger happens during every roundj < i. Therefore, by the beginning of roundk, at
the latest, a single cluster remains, and no more communication occurs - a contradiction.

2. Consider clusterC that has the highest cost when communication stops. The costof this
cluster is alsoRipple’s assignment cost. Either this is the only cluster in the network, or
it does not dominate its neighbors, by Lemma5.3. In the first case, the assignment’s cost
is smaller or equal to the cost of a centralized solutionALG. In the second case, either
the cluster is notε-improvable, or it has a neighbor of equal cost that is notε-improvable.
Hence, the assignment’s cost is at most(1+ ε) timesALG’s cost. In all cases, the algorithm’s
approximation factor is bounded byα = rALG(1 + ε). �

The theoretical upper bound on the convergence time is tight. Consider, for example, a network
in which distances are negligible, and initially, the cluster with the smallest id is heavily congested,
whereas the others are empty of users. The congested clustermerges with a single neighbor in each
round, due to the algorithm’s communication restriction. This process takesk − 1 rounds, until all
the servers are pooled into a single cluster.

We now turn to proving the algorithm’s locality property:

Theorem 5.3. (Ripple’s locality) Consider a workload in which serversi is the nearest server
for all users. LetC be the smallest non-ε-improvable cluster that includessi. Then, the size of
the largest cluster constructed byRipple is at most2|C| − 1, and the convergence time is at most
|C| − 1.
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Proof. The only cluster that can expand throughout the algorithm isCi, in which si is the leader.
The other clusters, which are empty of users, are vacuously non-improvable, and hence, contain a
single server each. IfCi is initially non-improvable, then it will not merge with anyother cluster,
and the claim holds trivially. Otherwise, in every round1 ≥ j before the completion,Ci absorbs
serversi−j, if i− j ≥ 1, and serversi+j, if i+ j ≤ k.

At all times,Ci is uniquely identified by its set of servers (it is clear that it contains all the users).
Assume that the execution stabilizes after constructing a cluster{si−l, . . . , si+r}. By definition,Ci
was stillε-improvable after the penultimate round of communication.Therefore, its sub-clusters
C ′
i = {si−l+1, . . . , si} andC ′′

i = {si, . . . , si+r−1} areε-improvable too, since removing servers
from a cluster without removing any user from it cannot lead to a better local solution. Hence,
eitherC ′

i or C ′′
i are proper subsets of the smallest non-improvable clusterC that includessi, and

therefore,|C| ≥ max(l, r)+1. The final size ofCi is l+r+1 ≤ 2|C|+1. Ripple’s communication
stops aftermax(l, r) ≤ |C| − 1 rounds.

5.5.3 Handling a Dynamic Workload

For the sake of simplicity, bothTree andRipple have been presented in a static setting. However,
it is clear that the assignment must change as the users join,leave, or move, in order to meet the
optimization goal. In this section, we outline how our distributed algorithms can be extended to
handle this dynamic setting.

We observe that the clustering produced byTree andRipple is a partition of a plane into
regions, where all users in a region are associated with servers in this region. As long as this
spatial partition is stable, it can be employed for dynamic assignment of new users that arrive to a
region. In a given region, the leader can either (1) re-arrange the internal assignment by re-running
the centralized algorithm in the cluster, or (2) leave all previously assigned users on their servers,
and choose assignments for new users so as to minimize the increase in the cluster’s cost.

Tree andRipple can be re-run to adjust the partition either periodically, or upon changes in
the distribution of load. Simulation results in Section5.4suggest that the overhead of re-running
both algorithms is not high. However, this approach may force many users to move, since the
centralized algorithm is non-incremental. In order to reduce handoffs, we would like to avoid
a global change as would occur by running the algorithm from scratch, and instead make local
adjustments in areas whose load characteristics have changed.

In order to allow such local adjustments, we change the algorithms in two ways. First, we
allow a cluster leader to initiate a merge whenever there is achange in the conditions that caused
it not to initiate a merge in the past. That is, the merge process can resume after any number of
quiet rounds. Second, we add a new cluster operation,split, which is initiated by a cluster leader
when a previously congested cluster becomes lightly loaded, and its sub-clusters can be satisfied
with internal assignments that are no longer improvable. Note that barring the future load changes,
a split cluster will not re-merge, since non-improvable clusters do not initiate merges.

This dynamic approach eliminates, e.g., periodic cluster re-construction when the initial distri-
bution of load remains stationary. Race conditions that emerge between cluster-splitting decisions
and concurrent proposals to merge with the neighboring clusters can be resolved with the conflict
resolution mechanism described in Section5.3.2.
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Chapter 6

QMesh

Wireless mesh networks, or WMNs, are a rapidly maturing technology for providing inexpensive
Internet access to residential areas with limited wired connectivity [16]. While initially designed
for small-scale installations (e.g., isolated neighborhoods), WMNs are now envisioned to provide
citywide access and beyond through deploying thousands of access points and supporting thou-
sands of simultaneous users [10, 41].

WMN users access the Internet through a multihop backbone offixed wireless routers. Some
of these routers, called gateways, are connected to the wired infrastructure. The WMN assigns
each user to a gateway upon initial connection, and can migrate it between gateways over time. In
traditional implementations, the gateways provide only Internet access. However, QoS-sensitive
applications will probably be supported by high-level services at the network edge, similarly to
the recent trend in wireline networks [9]. We envision a future WMN gateway that also provides
application-level support, e.g., acts as a SIP proxy, a media server cache, or a full-fledged game
server [42]. This trend extends the scope of the gateway assignment problem to a large variety of
applications and services.

We consider gateway assignment – a traffic engineering (TE) problem that seeks optimizing the
QoS or fully exploiting the network’s capacity for a specificapplication. The solution must take
into account the parameters that incur QoS degradation and additional costs, e.g., network dis-
tances and congestion, server (gateway) loads, and application-level handoffs. Mature networking
systems employ TE technologies (e.g., MPLS [68]) on top of their existing routing infrastructure,
to allow scalability of management. We believe that in future WMN’s, traffic engineering solu-
tions like gateway assignment will deployed atop other performance optimizations that are already
in place (e.g., multiple radios [17], smart routing metrics [51], etc.).

It is common practice in small-scale WMNs to always assign a user to the nearest gateway
(e.g., [18]). In this approach, gateway handoffs (macro-mobility) are tightly coupled with link-
layer access point (AP) handoffs (micro-mobility). That is, when a user moves and associates with
an AP that is closer to a different gateway than its current one, it automatically performs a gateway
handoff too. This simple approach suffers from two drawbacks. First, it cannot adapt to load peaks
within the WMN by load-balancing among multiple gateways. Second, it does not consider the
application-level impact of such gateway handoffs. For example, in VoIP, handoffs are relatively
low-cost, due to a small state associated with a session, whereas in online gaming, the performance
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penalty of transferring the cached application state between two servers may be very high. Hence,
there is a need to decouple AP transitions from gateway handoffs. While the former are purely
location-based, application-transparent, and do not incur a high performance impact [18], the latter
are not transparent, and should be driven by service-specific QoS considerations.

We propose QMesh (Section6.3) – a framework for dynamically managing gateway assign-
ments in future WMNs that can be instantiated with application-specific policies. QMesh is most
beneficial for applications that allow gateway handoffs. Traditional applications that do not handle
handoffs are supported, but might receive a degraded QoS. QMesh manages two types of decisions
for each mobile user: (1)when to migrate it between two gateways, and (2)which gateway to
choose upon a transition. QMesh employs application-specific considerations to balance the trade-
off between two conflicting goals: assigning the user to a gateway that provides it with the best
QoS at any given time, and reducing the number of costly gateway handoffs. QMesh does not re-
quire any extension of the underlying routing infrastructure, in particular, it does not introduce any
non-scalable mechanisms like host-specific routes. Since QMesh makes decisions on a per-user
basis, migrating a single user does not directly affect others, thus avoiding traffic oscillations.

QMesh manages gateway handoffs in a scalable distributed way, through a low-overhead sig-
naling protocol that runs within the mesh transparently to the mobile user’s networking stack.
It monitorsthe QoS of application traffic flows to determine the handoff times, andprobesthe
prospective QoS to in a shadow process to select the candidate handoff targets. Probing is scalable
since it is performed within the mesh rather than separatelyby each user. The key to the protocol’s
efficiency is its adaptive approach, which performs probing(1) at distances proportional to those
required for dissipating the load, and (2) at the frequency required to satisfy the QoS needs. For
example, in a low-utilized mesh with little mobility, wherea near gateway is likely to provide a
good performance, QMesh infrequently performs very few probes limited to the close neighbor-
hood. In contrast, if load is high and current QoS is unsatisfactory, QMesh is more aggressive in
probing distant gateways more frequently.

QMesh can tolerate a gateway’s failure by rapidly re-assigning its users to a backup gateway.
The maintenance of backup gateways is a by-product of the probing protocol, i.e., it does not incur
any additional communication overhead.

We evaluate QMesh’s impact on the application QoS in a WMN through extensive simulations,
mostly of VoIP but also of other real-time applications thatare more handoff-sensitive (e.g., online
games). The studied network topologies and mobility modelsare described in Section6.4, whereas
Section6.5extends on the assumed MAC architecture and the traffic scheduling policies. We first
explore a campus-scale WMN (600 APs) with topology and mobility traces drawn from the public
CRAWDAD database [2]. Since our main interest is in large-scale networks, we also study a
citywide WMN (4000 APs) with highly mobile users. To this end, we experiment with two user
populations: (1) a near-uniform distribution, generated by the popular random waypoint (RWP)
mobility model [96], and (2) a more realistic distribution biased toward the residential centers,
induced by analternating weighted waypoint(AWWP) model for urban traffic [65]. The numerical
results demonstrate QMesh’s significant advantage over na¨ıve nearest-gateway assignment for all
workloads. The QoS achieved by QMesh is close to that of a theoretical BestMatch algorithm
that uses instantaneous perfect information. Finally, we show that QMesh adjusts its overhead to
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workload in a scalable way.

6.1 Related Work

Handoff optimizations in mobile systems have been extensively addressed since the early 1990’s,
mostly in the context of cellular networks (e.g., [86]). These studies primarily focused on optimiz-
ing the network capacity. Handoffs in cellular networks aretriggered by physical metrics, and are
handled at the link layer. The early research of mobility in 802.11 networks focused on link-layer
issues, and on integration with the cellular networks (e.g., [76]). Our work is different, because we
consider the network layer and above. In this context, handoffs are optional, they can improve the
QoS over time, but their potential performance hit is not negligible.

Recently, Amir et al. presented a design and implementationof SMesh - a prototype WMN
with mobility support [18]. They concentrated on seamless mobility of users between mesh access
points. SMesh adopts the nearest-gateway handoff policy, i.e., the users of each AP are auto-
matically assigned to the gateway closest to this AP. This approach is appropriate in a small-size
installation described in that paper (about 20 access points and two gateways on the same LAN
segment). However, this policy can lead to poor QoS in a wide-area mesh, as shown herein.

Many mature networking solutions address QoS optimizations as as a traffic engineering (TE)
problem on top of the existing routing infrastructure (e.g., MPLS in carrier networks [68]). Almost
all modern routing protocols (e.g., OSPF [80]) are traffic-independent, thus separating the con-
cern of optimizing the QoS of individual flows to higher-level TE solutions. A different approach,
adaptive QoS routing, has been actively studied by the research community (e.g., [62, 75]), orig-
inating at Gallagher’s seminal work on minimum delay routing [57]. Many load-adaptive routing
algorithms are designed for static or quasi-static workloads and suffer from slow convergence in
highly dynamic situations. Moreover, they are complex to implement, and their behavior is hard
to predict and manage. QMesh’s design adopts the first approach for WMNs.

While most TE solutions optimize the unicast OoS, the problem of instantaneously optimal
gateway assignment is equivalent toanycastrouting [98] that seeks connecting each user to some
service node among a given set, so as to minimize the average delay. This problem is common
to multiple domains – for example, some papers pointed out the importance of joint handling of
distance and load in content delivery networks [63]. However, we are not aware of any work that
handles dynamic anycast of flows with mobile endpoints whileconsidering handoff costs, and
proposes scalable real-time solutions.

Adaptive probing of multiple mobile anchor points (MAPs) was proposed in the context of
hierarchical mobile IPv6 routing [45]. However, in that work, handoffs are fully dictated by ge-
ography (rather than by QoS), and the simulation scale is small (a few MAPs, and a few tens of
users). Ganguly et al. [58] suggested a number of VoIP performance optimizations in a WMN.
In particular, they proposed maintaining the assignment ofeach flow to a single gateway, while
constantly probing multiple user-gateway paths and opportunistically re-routing the traffic through
the best path. Unlike QMesh, this approach tightly couples between gateway selection and routing,
and induces non-scalable host-specific paths within the mesh.
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6.2 Design Goals

The QMesh framework handles dynamic assignment of mobile users to WMN gateways. We
pursue the following goals for this service:

• Satisfying application QoS requirements as closely as possible, in the presence of user mo-
bility.

• Handling a variety of applications with different QoS requirements and handoff penalties.

• Tolerating infrequent gateway failures.

• Maximizing the service capacity in the presence of load peaks.

• Low-overhead, scalable, and fully distributed network management.

• No proprietary client protocol stack extensions.

6.3 QMesh Framework

In this section, we introduce the QMesh solution, which implements the design goals listed in
Section6.2. Section6.3.1outlines the QMesh network architecture, and describes themethods
and parameters that must be deployed within a WMN to support QMesh. Section6.3.2introduces
QMesh’s gateway assignment protocol.

6.3.1 Network Architecture

QMesh provides mobile mesh users with access to real-time application services. The users per-
ceive the WMN as a standard 802.11 LAN, and are oblivious to the mesh’s internal multihop
structure. At all times, each user associates at the link level with some mesh router within the radio
transmission range, called the user’s current AP. APs provide basic connectivity within the WMN,
including address resolution and packet delivery by MAC address. As the user moves out of the
radio range of its current AP, it associates with a new AP to preserve connectivity. Upon initial con-
nection, QMesh associates each user with a single gateway, which provides it with the high-level
service (e.g., Internet access, SIP proxy, or game server).QMesh may later migrate this user to a
new gateway when the QoS of the original one becomes poor due to mobility or congestion, while
considering an application-specific handoff penalty. QMesh gateway handoffs (macro-mobility)
are completely independent of the underlying WMN’s AP handoffs (micro-mobility).

Applications that seek optimal QoS must explicitly register with QMesh to receive gateway
identity change notifications. This can be done through the application’s standard signaling proto-
col, e.g., SIP. For traditional applications that cannot function correctly in the presence of gateway
handoffs, QMesh can be configured to either never re-assign the gateway, or to employ tunneling
through the initially assigned one (e.g., [20]), at the cost of QoS degradation. Below, we focus on
the former kind of applications.
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Method Semantics Example Implementation
monitor(u) return themonitoredQoS of useru’s gateway. VoIP delay/jitter RTCP within the user’s flow
probe(g) query theprospectiveQoS of gatewayg VoIP delay/jitter RTCP over a test connection
cost(q) return thecumulativecost incurred by the QoS measureq VoIP packet loss

Parameter Semantics
τm Monitoring interval: the rate of runningmonitor().
Tmin, Tmax The lower and upper bounds on the probing rate

(the actual intervalτp is set adaptively, depending on the QoS level).
P The number of simultaneous random probes

(a largerP can offer better QoS at the cost of higher overhead).
H Handoff threshold: the cumulative cost since the last transition that triggers a gateway handoff

(a smallerH means more aggressive handoffs).
∆ QoS threshold for the probing rate control

(the probes are run more frequently if the QoS is poor).

Table 6.1:Methods and parameters deployed at the mesh nodes by applications using QMesh.

Application Deployment: QMesh offers a generic framework for supporting multiple applica-
tions. The needs of each application are captured by itsservice costwhich combines multiple
QoS-degrading factors. This cost is accumulated over time.For example, the cost of a VoIP ap-
plication can be reflected as the number of dropped or late voice packets. We distinguish between
continuouscosts, which stem from network distances and load peaks, andone-timecosts incurred
upon gateway transitions. The gateway assignment algorithm balances the tradeoff between these
two kinds of cost (Section6.3.2). Table6.1specifies the methods and parameters that applications
using QMesh deploy at the mesh nodes.

6.3.2 Gateway Assignment Protocol

QMesh manages gateway handoffs in a fully distributed fashion, by running the assignment pro-
tocol independently on each mesh router. Each AP router performs the protocol on behalf of its
users. Handoff management entails two kinds of decisions for each user, namely,whento request
a gateway handoff, andwhichgateway to transition to. The first decision is driven bymonitoring
the user’s recent QoS (e.g, by tracking the RTCP control packets within a VoIP media flow). The
second one is based onprobing multiple gateways (e.g., in VoIP, the AP-gateway delay can be
tested over a low-bandwidth dedicated connection; in an online game, an AP can predict the aver-
age request delay by reading the response time statistics from a server, through a remote invocation
of a standard application resource monitoring (ARM) API [93]). Monitoring and probing are per-
formed by each AP in the background, transparently to the mobile users. When an AP decides to
re-assign some user to a different gateway, it selects the one that offered the best QoS in the last
probe.

Figure6.1illustrates a handoff of a media session (e.g., VoIP). The gateways provide an Internet
connection service. Each gateway is attached to a differentIP subnet, and functions as a NAT
router. Initially, the mobile user is served by access pointAP1, which associates it with gateway
GW1 (Figure6.1(a)). The second party resides in the public Internet and communicates with the
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Figure 6.1: Handoff of a VoIP session between two NAT gateways in QMesh. (a) Initial
assignment to GW1 by access point AP1. (b) Micro-mobility toaccess point AP2, in parallel
with monitoring and probing. (c) Macro-mobility to gateway GW3. GW2 is congested and
consequently not selected.

user through GW1’s IP address. The user then moves to access point AP2 (Figure6.1(b)), which
forwards its packets to GW1 over mesh links. Consequently, the packet latency is degraded. AP2
monitors the session’s quality, and in parallel probes gateways GW2 and GW3 for their prospective
QoS. At some point, AP2 decides to transfer the user from GW1 to GW3. GW2 is not selected
despite its proximity to AP2 because it is currently congested with other users. AP2 sends a
notification with GW3’s IP address to the user, through the application’s natural signaling protocol
(e.g., SIP). In parallel, it re-routes the UDP media flow within the mesh via the new gateway
(Figure6.1(c)). The user re-registers its new IP address with its peer.Before the re-registration
is complete, the peer’s traffic continues to arrive to GW1, and is dropped there. This loss is the
handoff cost. (In an alternative implementation, GW1 couldtemporarily duplicate the traffic to
GW3 during the transition, in order to minimize the packet loss – e.g., [18]. In this case, the
handoff cost is the number of duplicate packets.)

A handoff management algorithm must balance the tradeoff between two conflicting goals. On
the one hand, it would like to always assign each user to the best gateway, in order to minimize
continuous costs. On the other hand, one would like to decrease the number of handoffs, in order to
reduce one-time costs. QMesh balances this tradeoff by controlling the fraction of one-time costs
in the total cost. The algorithm is configured with ahandoff thresholdH.

QMesh monitors each user’s cumulative cost since the last handoff (not inclusive), and allows
a new transition only when this cost exceedsH. For example, if the application-dependent hand-
off cost isC, then thetotal cost of each assignment period (including the handoff in theend) is
bounded byC +H, and therefore, the fraction of the handoff cost within the total cost is bounded
by C

C+H
.

The pseudocode of the QMesh assignment protocol appears in Figure 6.2. Cost monitoring
(Lines 4–16) happens everyτm time units. Once the cumulative cost of useru, denotedcost[u],
exceedsH, the user’s gateway is re-assigned.cost[u] is tracked by its current AP and sent to
the new one upon an AP handoff (Lines 17–19). A gateway’s failure is manifested by a rapid
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accumulation of cost of all users assigned to this gateway, which triggers a fast handoff.
The AP runs the gateway selection procedurenextchoice() (Lines 30–45) once inτp time

units, independently of cost monitoring.nextchoice() selects the next assignment forall local
users of the same application jointly. Thebest variable holds the selected gateway’s identity, and
is used upon subsequent handoffs of all users served by this AP. QMesh maintains the identity
of the second-best gateway, denotedbest2, to ensure failover in the case that the current opti-
mal choice fails. This approach tolerates a single failure between two consecutive invocations of
nextchoice().

Waiting a long time between invocations results in using stale choices, which translates to
suboptimal assignments in dynamic workloads. On the other hand, runningnextchoice() at a
high rate incurs undesirable control overhead. In order to balance between the two, each AP sets
the value ofτp adaptively, using the feedback on the quality of the current choice. If the QoS below
a configured threshold∆, thenτp is exponentially reduced, otherwise, it is linearly increased. The
possible values ofτp are constrained by the lower and upper boundsTmin andTmax, respectively.
If the current choice’s failure is suspected, immediate re-selection is scheduled (Line 12).

Most QoS metrics are distance-sensitive, i.e., an optimal gateway is likely to be near to the
user, and the primary reason for picking a remote gateway is network congestion around the close
ones. Therefore, QMesh always probes the nearest gateway first, and probes further gateways
only if they can help dissipating the local load. More distant gateways are probed only if moving
further continues to improve QoS (which happens in case of high load peaks). Remote gateways
are randomly load-balanced.

Assume that the distance between the AP and the closest gateway isD network hops. The
algorithm works in phases. In phasei ≥ 0, it probes in parallelP random candidates at distances
2i−1D < d ≤ 2iD from the AP. That is, the probed nodes are drawn from concentric rings of
doubling width around the AP (the empty rings are skipped, Line 34) – see Figure6.3for illustra-
tion. The number of rings is logarithmic with the network diameterψ, and hence, the worst-case
number of probes in a time unit isP logψ

Tmin
. Note that in the first phase, only the nearest gateway is

probed. A gateway chosen multiple times is probed only once.The algorithm stops either if the
result of a phase does not improve the result of the previous phases, or if all the rings are sampled.

Discussion: Using a small number of probes is the key to the algorithm’s scalability with the net-
work size. We later show through simulation (Section6.4) thatP = 1 suffices for most workloads,
and the average number of probes in a time unit is very close to2

Tmax
– far below the pessimistic

upper bound. One more remarkable property is that the algorithm’s fault-tolerance does not incur
any additional overhead since every invocation ofnextchoice() performs at least two probes, i.e.,
the maintenance ofbest2 comes for free.

We further empirically show that QMesh closely approximates the unrealistic best-match as-
signment policy that possesses complete instantaneous information about the network state. This is
in concert with Tasiulas’s work [92], which demonstrated that choosing the best candidate among
the current assignment and a handful of random choices is as powerful as the exhaustive search.

Note that QMesh’s distributed opportunistic assignment policy cannot guarantee the best system-
wide cost at all times. For example, an AP in a congested area may start choosing different gate-
ways, thus using longer routes and amplifying the network load in other regions. In some cases,
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1: Initialization:
2: τp ← Tmax
3: best← best2 ← arg ming∈G distance(g)

4: {Cost monitoring and handoff - per user}
5: Every τm time do for user u
6: cost[u]← cost[u] + cost(monitor (u))
7: q[GWID[u]]← monitor (u)
8: if cost[u] ≥ H then
9: cost[u]← 0

10: if GWID[u] 6= best then
11: best← best2

12: τp ← Tmin
13: GWID[u]← best

14: upon AP handoff(u) do
15: send(cost[u]) to the new AP

16: Every time slot do τp
17: {Gateway selection - shared for all users}
18: nextchoice()
19: {Adjust the invocation period}
20: if (q[best] < ∆) then
21: τp ← max(τp/2, Tmin)
22: else
23: τp ← min(τp + 1, Tmax)

24: procedurenextchoice()
25: G′ ← ∅, D ← ming∈G distance(g)
26: while (G′ 6= G) do
27: ring← {g ∈ G|D2 < distance(g) ≤ D}
28: if (ring 6= ∅) then
29: choices← {P random choices from ring}
30: oldbest← best

31: results← probe(choices)
⋃{q[best]}

32: (best, best2)← arg max2 results[c]
33: if best = oldbest then
34: return
35: D ← 2D, G′ ← G′

⋃

ring

Figure 6.2:The QMesh gateway assignment.
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d=1

d=2

d=4

Figure 6.3:Selecting candidates for a probe in the QMesh gateway assignment protocol. The
number of random probes in each phase isP = 1. The selection process stops after probing
the third gateway that fails to provide a better QoS than the second one.

the network may even stabilize in an equilibrium point whichis far from optimal. This problem
is common to many game-theoretic scenarios (e.g., [89]). However, Section6.4shows that under
the VoIP traffic, most of the congestion happens close to the gateways, and hence, the route length
affects the network delay only weakly. Therefore, our setting is close to a load-balancing game on
unrelated machines – a concept extensively studied by the theory community. A load-balancing
game always converges to a Nash equilibrium point [54]. While in general this game admits
arbitrarily bad equilibria, its stochastically expected operating points are near-optimal [44]. Fur-
thermore, our simulations show that on average, QMesh does not stretch the user-gateway routes
by much, and hence, the probability of the worst-case scenarios is small.

6.4 Evaluation

We empirically compare QMesh to alternative assignment policies, through extensive simulations.
Most of our simulation focus is on VoIP. We study the algorithms’ QoS and service capacity, as
well as their adaptiveness to mobility and load. Section6.4.1presents our cost model for VoIP
QoS evaluation, and Section6.4.2describes two policies that QMesh is compared to.

We first evaluate the protocols in a campus network with real user mobility traces extracted
from a public dataset (Section6.4.3). However, the scale of this network is around 600 APs, and
a limited capacity (150 users). Therefore, we turn to simulating a projected citywide mesh (Sec-
tion 6.4.4) with 4096 APs, and address two spatial distributions of mobile users: a near-uniform
distribution, as induced by the widely adopted random waypoint (RWP) mobility model [96], and
a more realistic distribution with load peaks in residential and business centers, produced by an
Alternating Weighted Waypoint (AWWP) model of urban traffic. Finally (Section6.4.5), we show
the importance of service-specific handoff policies using an example an application which is more
sensitive to handoffs (e.g., an online game).
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6.4.1 VoIP Traffic and Cost Model

We consider RTP-over-UDP VoIP flows generated by a standard G.729 codec, i.e., a constant bit
rate (CBR) flow of 50 packets per second (20ms inter-packet delay). The typical one-way delay
required to sustain a normal conversation quality is 100ms [58]. A VoIP packet is considered lost
if it fails to arrive to its destination within an admissibledelay. We attribute most of the delay to
the mesh infrastructure, and set the admissible threshold to 80 ms, thus allowing a small slack for
additional delay incurred by the wired Internet.

We evaluate the VoIP QoS in terms of average packet loss ratio, which is the most dominant
component in Mean Opinion Score (MOS) – the standard VoIP quality metric [7]. MOS values
range from 0 to 5; values above 3.8 are considered acceptable; values above 4.0 are considered
good. For a given workload, we define the servicecapacityas the maximum number of users that
can be served within an acceptable MOS. In order to visualizeour simple metric, we draw two
MOS levels, 4.0 (corresponding to 1% of loss) and 3.8 (2% of loss) on most of our performance
plots.

We focus on VoIP calls between mesh users and peers in the public Internet. In this context, a
gateway handoff involves a change in the user’s external IP address, and triggers application-level
signaling to re-route the traffic. This results in one secondof connectivity loss, during which all
the VoIP packets are lost. Thus, the handoff cost isC = 50 (packets).

A VoIP flow starts losing packets if its path to the currently assigned gateway becomes long or
congested. Excessive packet delays are the primary reason for continuous loss. Network delay is
incurred by accessing the various kinds of mesh links (user,backbone, and gateway connection),
and by queuing at the mesh routers. Section6.5 extends on the models used by MeshSim. The
link-level delays are characterized by the MAC architecture, whereas the queuing delays depend
on the VoIP traffic scheduling policy.

In order to allow for large-scale simulations with thousands of users and access points, we de-
veloped a flow-level mesh network simulator, MeshSim [12]. Packet-level simulation tools [4, 13]
cannot handle such a scale. MeshSim models the delays incurred to VoIP flows at each infrastruc-
ture node and link. It uses an accurate 802.11 link delay model [94], and implements two state-
of-the-art optimizations: (1) multiple antennae at each node, with channels carefully allocated to
minimize cross-link interference, and (2) VoIP aggregation (e.g., [58, 97], and also supported by
the 802.11n standard). We describe MeshSim in more detail inSection6.5.

6.4.2 Assignment Policies

We compare QMesh to two simple assignment policies, NearestGateway and BestMatch. Near-
estGateway assigns the user to the gateway closest to its current AP. That is, gateway handoffs
are tightly bound to AP transitions. The BestMatch policy isa realistically impossible variant of
QMesh, which runs the greedy selection procedure upon everyAP handoff request, and assumes
instantaneous correct information. That is, it performs anexhaustive search of the best candidate
rather than random sampling of one, and moreover never uses stale information.

QMesh and BestMatch are instantiated with cumulative packet loss as the QoS cost function.
The handoff threshold is set toH = 10 packets. This relatively small value is chosen because the
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Figure 6.4:The Dartmouth network map and gateway placement.
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Figure 6.5:Scalability evaluation of the gateway assignment algorithms in an unplanned cam-
pus WMN, with topology and user mobility traces drawn from the Dartmouth CRAWDAD
public dataset.

handoff cost is low (C = 50 packets), and given the user speeds, the loss of 10 packets isa sufficient
indication for changing the assignment. QMesh uses a singleprobe in each phase ofnextchoice()
(i.e.,P = 1). It adaptively adjusts the interval between invocations of nextchoice() within the
range[Tmin = 1sec, Tmax = 15sec]. The QoS threshold for accelerating the probes is∆ = 50 ms.

6.4.3 Campus Scale Simulation (CRAWDAD)

Our first case study is mobile VoIP performance in an unplanned mesh deployed within a large
neighborhood or a campus. We draw the network topology and the mobile users’ motion traces
from CRAWDAD [2], a community resource for archiving wireless data at Dartmouth college,
thus avoiding the need to speculate about the simulation’s input. The original Dartmouth network
is a single-hop WLAN. The network includes over 600 irregularly placed access points. While in
a WLAN, APs are connected via a wired infrastructure, in our WMN setting, they communicate
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through wireless interfaces. All routers use omnidirectional antennas with a transmission radius
of 133m – a minimal value for which the network remains connected. We place the Internet
gateways in a way that minimizes the mean distance (in the number of hops) from each AP to
the nearest gateway. For this purpose, the network is partitioned into 5 clusters using a K-Means
algorithm [66], and within each cluster, the router closest to the centroid as selected to serve as a
gateway. Figure6.4 illustrates the WMN’s topology (the campus map is due to [3]). The APs are
depicted as dark dots, and the selected gateways as triangles with a dot in the middle.

We employ the 2001–2003 movement dataset [90] that contains the mobility traces of more
than 6200 users, collected over a period of many months. Eachtrace contains a sequence of
(timestamp, AP id) pairs that describe the history of the user’s associations with wireless APs. The
majority of users are either static or quasi-static (occasionally hopping between close APs once in
a few minutes) most of the time. Their locations are heavily biased toward the faculty buildings.

We explore the scalability of the assignment policies of with network load, as follows. For each
data pointL, we build a set of scenarios in whichL users generate a continuous VoIP stream, as
follows. We extract from the trace a set of time intervals, all at least 10 minutes long, in which the
number of online users is exactlyL. Since the database is very large, each set contains hundreds
of intervals for eachL. We simulate NearestGateway, BestMatch and QMesh on the traces of 50
intervals selected uniformly at random from each set, and average the loss rates among the runs.
Figure6.5(a) depicts the results. The loss of BestMatch and QMesh remains acceptable as long
as the number of users does not exceed 125 (the service capacity). Therefore, in the absence of
mobility, BestMatch and QMesh efficiently balance the costsincurred by network distances and
gateway loads. Only under high loads, some differentiationbetween the two appears, because the
latter searches for the candidate more carefully and locates it immediately. On the other hand,
NearestGateway cannot handle even 25 users, due to its inability to exploit multiple gateways.
QMesh’s adaptive nature becomes even more pronounced as we study the dependency between the
congestion and the user-gateway distances (Figure6.5(b)). For small loads, QMesh and Nearest-
Gateway produce an identical average distance of 2.1, whilefor high loads, QMesh stretches the
routes to 4.9 to optimize the assignment.

Following this, we examine QMesh’s scalability in the presence of concurrent TCP flows gen-
erated by traditional data applications. We repeat the previous experiment, for a varying number
of TCP connections (0% to 20% of the number of users, with the rest running VoIP flows). All
TCP flows are handled in a traditional way, namely, each of them is initially assigned to the closest
gateway, and never reassigned again. In order to prevent starvation of the VoIP traffic by TCP
flows, we allocate the latter with at most 50% of available transmission bandwidth, and schedule
their packets at a lower priority. Thus, the VoIP capacity ofthe shared links decreases, but the QoS
of the admitted flows is guarantee. Figure6.5(c) shows that the average loss ratio increases with
the fraction of TCP flows, but the impact is not dramatic within the admissible load range.

6.4.4 City Scale Simulation

Our ultimate goal is studying the performance of QMesh in a very large-scale WMN with highly
mobile users. For this, we turn to simulating a citywide meshthat exceeds the campus deployment
by an order of magnitude in the spanned area and the population.
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We consider an urban geography of size8 × 8 km2. There are five population areas – four
residential neighborhoods and a commercial downtown. Userlocations within each area follow a
Gaussian distribution around the area’s center with varianceσ, which is called the area’seffective
radius. The downtown’s effective radius is 1km, and its center is co-located with the center of the
grid at coordinates (4km, 4km). Each neighborhood’s effective radius is 500m, and their centers
are located at coordinates (1km,1km), (1km, 7km), (7km, 1km), and (7km, 7km). Figure6.6(a)
depicts this topology. Areas are depicted as circles, and gateways as small triangles. The Internet
access is provided through a regular grid of 64 gateways, spaced 1km apart. The wireless backbone
is a fine grid of 4096 mesh routers, spaced 125m apart. The transmission radius is 125m.

Our simulation employs two stationary distributions of mobile users, each generated by a dif-
ferent mobility model:

1. A near-uniform distribution, produced by the popular random waypoint model (RWP) [96].
The node uniformly chooses the destination and moves towardit at a constant speedv = 20
m/s (an urban driving speed).

2. A more realistic distribution that biases the users toward the population areas (e.g., neigh-
borhoods or downtown), produced by the projected alternating weighted waypoint (AWWP)
model. At any given time, a mobile node is either stationary in some area, or moving on a
highway between two areas at a constant speedv = 20 m/s. The popularity of different areas
varies during the day.

The Alternating Weighted Waypoint Model

AWWP is one plausible way to create a clustered user distribution. It is inspired in part by [65],
which explored preferences in choosing destinations of pedestrian mobility patterns. The nodes’
transitions between the areas are governed by a Markov process that switches its transition proba-
bility matrix every 12 hours. The system is modeled by two super-states, each of which is a Markov
chain. Each state in a chain corresponds to a single area. Each probability matrix designates the
users’ preferred locations at a certain time of day. The moving node’s destination point within
the target area is a random variable, drawn from the Gaussiandistribution described above. In the
morning, most users drive to the downtown and stay there during the working hours, whereas in
the evening, most users drive back to their neighborhood andstay at home during the night. Direct
transitions between the neighborhoods are not allowed.

Figure6.6(b) depicts this random process. We denote the downtown byD, and neighborhood
i byNi. The transition probabilities are (symmetric for alli):

Morning/day Evening/night

pNi,D 0.9 0.1
pD,Ni

0.025 0.225
pD,D 0.9 0.1
pNi,Ni

0.1 0.9
pNi,Nj

0 0
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(a) City topology

D

N
2

N
3

N
1

N
4

0.9

0.1
0.1

0.1 0.1

0.90.9

0.90.9

0.025 0.025

0.025
0.025

D

N
2

N
3

N
1

N
4

0.1

0.9
0.9

0.9 0.9

0,10.1

0.10.1

0.225 0.225

0.225
0.225

evening

morning

(b) Alternating Weighted Waypoint

Figure 6.6:Urban Simulation Settings: (a) The city’s topology (downtown and four neighbor-
hoods) and the gateway grid. (b) The random process behind the AWWP mobility model.

The stationary distributions of the Markov chains are:

Morning/day Evening/night

πD 0.9 0.1
πNi

0.025 0.225

A mobile user’s behavior is deterministic between transition times. Upon a self-transition, a
node remains at its current location for a period oft. In case of a transition of the user to another
area, it picks a destination point from the distribution induced by the destination area, and moves
to it with a speed ofv. For simplicity, we assume that all users wait for the same time and move
with the same speed. We sett = 4 min. Note that the waiting time is equal to the driving time
between the centers of the downtown and neighborhood areas.In this setting, the motion can be
approximated as a discrete-time Markov chain, in which the time slot length is 4 min. All state
transitions (including the probability matrix switch) happen on slot boundaries. During a single
slot, the user either moves between two areas, or remains in one of them.

In each super-state (day or night), the users are mostly stationary, except in a short time after
the transition, when they mostly move to their new preferredareas. Upon switching the super-state,
the convergence to a new matrix’s stationary distribution is short (3-4 time slots). Therefore, the 15
min following the super-state transition are considered atransition period, after which the system
enters astableperiod.

We also experimented with richer models, e.g., non-straight movement trajectories, and con-
strained motion within the population areas. However, theyyield almost the same results because
the most important factor is the load peaks. Hence, our simulations focus on the presented simple
model.

Numerical Results

We compare the loss rates and overhead of QMesh to BestMatch and NearestGateway, for the near-
uniform and skewed stationary distributions produced by the RWP and AWWP mobility models,
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respectively. Every data point is averaged over 20 runs. ForAWWP, we separately study four dif-
ferent times of day: morning (neighborhoods-to-downtown movement), day (mostly staying in the
downtown), evening (downtown-to-neighborhoods movement), and night (mostly staying in the
neighborhoods). Day and night are stable periods, morning and evening are transition. The morn-
ing and evening scenarios are simulated for 15 min (the transition period time, see Section6.4.4).
The day and night scenarios are insensitive to the measurement period; we used 30 min periods for
them. The RWP experiments were initialized with the uniformdistribution of users, and preserved
it over time [96]. Each experiment simulated 15 min of user motion.

We first study the the dependency between load and loss for thethree algorithms. Figure6.7
depicts their behavior for near-uniform distribution induced by the RWP mobility pattern, with
loads ranging from 200 to 2000 users. At all times, NearestGateway succeeds in accommodating
each user at the closest gateway, because no cell’s load exceeds its capacity. All loss is due to
handoffs, and depends only on the user’s speed, and hence, itis constant for all loads. The Best-
Match and QMesh policies incur identical costs, since upon ahandoff, the local gateway is almost
always the best choice that cannot be improved by further probing. They improve the loss over
NearestGatewayby sustaining a user’s association with itsgateway beyond the grid cell’s bound-
aries, as long as the QoS permits. The maximal admissible user-gateway distance diminishes with
load, and hence, handoffs become more frequent, thus causing BestMatch’s and QMesh’s loss.

The shortcomings of NearestGateway become evident as we apply the same experiment for a
more realistic biased distribution of load generated by theAWWP model. We separately explore
the morning scenario featuring a transition of load from theperiphery to the center (Figure6.8(a)),
and the day scenario that reflects a stationary congestion inthe downtown (Figure6.8(c)). In both
cases, NearestGateway does not scale beyond 300 users due toits inability to resolve the congestion
in the downtown area to the other gateways. On the other hand,QMesh can accommodate 600 users
– just slightly below the baseline BestMatch. Figure6.8(b) differentiates the part of handoffs in
the packet loss (by depicting the average handoff frequency), in the morning scenario. QMesh’s
frequency is low and congestion-adaptive (growing slowly with load), while NearestGateway’s is
high and load-insensitive.

In the next experiments, we continue using the more challenging AWWP workload. Fig-
ure 6.9(a) depicts the distribution of costs achieved by NearestGateway, BestMatch and QMesh
by the time of day, for a load of 600 users. Note that NearestGateway’s loss is even higher dur-
ing the day than in the morning, due to the stationary congestion in the downtown. The price of
this congestion is higher than the cost of excessive handoffs during the morning transition. Since
the measured transition period also captures some resting time in the steady-state area for most
nodes, NearestGateway’s loss in the morning is higher than in the evening, when these areas are
not congested.

The same disadvantage of NearestGateway is observed when weexamine the relationship be-
tween a user’s mobility level (the fraction of time in which the user changes its location) and its
loss rate. Figure6.9(b) and Figure6.9(c) depict the distribution of loss among the mostly stationary
users (below 20% mobility) and the mostly mobile ones (above20%) achieved by NearestGate-
way and QMesh, respectively. (Note that a small fraction of users remains highly mobile even
in the stable regime, since transitions between populationcenters are not instantaneous). QMesh
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Figure 6.7:Scalability evaluation of the gateway assignment algorithms in a citywide WMN,
for a near-uniform distribution (RWP model).

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

Load (number of users)

P
ac

ke
t l

os
s 

(%
)

MOS 4.0

MOS 3.8

NearestNeighbor
BestMatch
QMesh

(a) Loss ratio, transition period
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(b) Handoff frequency, transition period
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(c) Loss ratio, stable state

Figure 6.8:Scalability evaluation for a clustered distribution (AWWP model): (a) Loss ratio
– morning. (b) Handoff frequency (average number of handoffs per minute) – morning. (c)
Loss ratio – day.

has the desirable property that the stationary users experience smaller loss rates than the mobile
ones. That is, most of the mobile users’ packet loss stems from handoffs (which do not happen to
the stationary users), while the congestion-oriented lossis minimized for both categories thanks to
opportunistic assignment. In contrast, under NearestGateway, stationary users in congested areas
suffer from continuous loss, which exceeds the occasional handoff-related loss incurred to mobile
users.

We study the distribution of load on mesh links, in order to show that under the QMesh as-
signment, the network operates close to its optimal equilibrium point. We focus on20% most
congested grid cells in a stable state (day), for 600 users. Figure 6.10 depicts the dependency
between a link’s distance from a gateway and the average number of VoIP flows assigned to this
link. Note that most of the load is concentrated on WMN links adjacent to gateways (QMesh and
BestMatch perform very close). VoIP packet aggregation (Section6.5) further reduces the number
of physical flows that contend for the same link. Therefore, all hops of any user-to-gateway route
are unlikely to be congested, except for the last one, i.e., long user-gateway routes do not create
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Figure 6.9:Average loss ratio distribution by the time of day, for the a skewed workload of 600
users (AWWP mobility model): (a) Comparison between 3 assignment policies, (b,c) Com-
parison between the mostly stationary (below 20% mobility)and the mostly mobile users, for
two separate policies.

new bottlenecks in the system. Hence, the distributed operation of QMesh is close to that of selfish
load-balancing, which is expected to stabilize in near-optimal configurations [44].

Following this, we examine QMesh’s control overhead – the average number of probes per
minute performed by each AP. We focus on the day scenario whenthe network congestion is most
heavy. The overhead depends on the number of probes per selection as well as on the probing rate.
Our measurements show that for most values of load, it is enough to applynextchoice() once
in 15 seconds to achieve an acceptable loss ratio. The average number of probes applied upon
gateway selection never exceeds 2.5, as opposed to the theoretical limit of the logarithm of the
network size. Moreover, for most values of the load, the number of probes is almost exactly 2 –
the minimal possible value. Figure6.11(a) summarizes these results in a single plot, which shows
that the overhead is very small for most workloads.

Finally, we study the potential QoS benefit of increasing thenumber of random probes made
by QMesh. We compare two instantiations of the algorithm usingP = 1 andP = 2, in the day
scenario. Figure6.11(b) shows that increasingP does not bring any performance impact for light
loads (below 400), and has a minor impact for heavy loads. Moreover, QMesh partially masks
the disadvantage of applying a single random probe by adaptively adjusting the probing interval
τp. Note that at a load of 600, QMesh withP = 1 starts increasing its probing rate due to QoS
degradation, which reduces the gap between it and QMesh withP = 2.

6.4.5 Service-Specific Handoff Policies

In all the above experiments, QMesh used a very low handoff threshold, and migrated each user
almost immediately as the user’s delay became inadmissible. Setting a low threshold (H = 10)
was correct because the handoff cost was also low (C = 50), and hence, there was no benefit in
delaying the new assignment. However, this policy is not necessarily true if the handoff cost is
very high, e.g., in an online game, in which a handoff entailsa substantial state transfer. Consider,
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Figure 6.10: Load distribution on mesh links in congested areas: most of the congestion
happens close to the gateways.
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Figure 6.11:Studying the effect of QMesh’s tuning parameters: (a) Scalability of the number
of probes per minute with load, (b) Impact of increasing the number of simultaneous probes
P . (c) Impact of handoff threshold for an application with a high handoff cost (50000):
aggressive policy (H = 10) vs. conservative policy (H = 10000).

for example, the same traffic model as described in Section6.4.1, the same continuous cost (1 lost
packet = 1 unit), and the handoff cost ofC ′ = 50000 units. We provide this example for insight
only, and do not claim that a realistic online game’s traffic/cost model is used.

Figure6.11(c) illustrates the comparison between two instances of QMesh parametrized by
H = 10 andH = 10000, respectively, under a light load (400 users). The second instance, which
is much more conservative in applying costly handoffs, consistently achieves a better cost with all
mobility patterns. Hence, tuning the handoff threshold in accordance with the application-specific
handoff cost is crucial for achieving a good overall cost.
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6.5 Delay Modeling in MeshSim

We briefly describe the delay models used by MeshSim, a flow-level simulator we developed to
provide network scalability beyond that of packet-level simulation tools [13, 4].

MAC Architecture and Link Delays: We assume that each router is equipped with distinct
interfaces for user access (802.11b) and backbone (802.11a) communication. These interfaces use
different wireless bands, and hence, the access and backhaul traffic flows do not interfere. 802.11a
is chosen for its abundance of orthogonal wireless channels(12), which are exploited to minimize
interference among the mesh links (this is also a common practice in commercial WMNs [10]). A
router employs two cards for communicating within the mesh -one for egress traffic and the other
for ingress traffic. This facilitates a parallel transmission and reception at the backbone, and hence,
a simultaneous upstream and downstream forwarding. The ingress interface is operated at a fixed
wireless channel. Whenever a router needs to communicate with some neighbor, it switches its
egress interface to the channel of this neighbor’s ingress card. Hence, a single ingress interface is
shared by the links emerging from the router’s neighbors.

The low-degree topologies utilized by our experiments1 and a substantial number of available
channels allow performing ingress channel assignment in a way that no pair of routers within two
hops from each other share the same ingress channel. Therefore, the only kind of MAC contention
at the backbone arises when two nodes simultaneously transmit to the same neighbor. That is, we
assume that no interference exists between two backbone links without a common endpoint.

Since at each mesh node, all the incoming backbone links share the same ingress interface,
the delay on each outgoing link depends on the cumulative load on this link’s target. The mesh
forwards each flow along the shortest path between its AP and gateway. Therefore, a particular
assignment of users to gateways determines the load on each link, and hence, the total link delay
incurred to each user. We use the model by Tickoo and Sikdar [94] to compute the expected latency
of traversing a shared 802.11 link (either access or backbone).

VoIP Aggregation and Queueing Delays:We assume that VoIP flow aggregation(e.g., [58], also
adopted by 802.11n) is employed in order to overcome the capacity limitation that is inherent to
wireless VoIP, namely, a high overhead of transmitting small packets over the 802.11 medium.
The VoIP traffic at mesh routers is handled through a VoIP-specific scheduling policy. A packet
that needs to be forwarded over an egress link is placed into the queue of this link. The link’s
scheduler sets the time for transmitting the next outgoing packet. At this time, the queued packets
are aggregated into a super-packet, which is transmitted over the medium as a single frame. Upon
arrival to the neighbor, the super-packet is de-multiplexed, and the individual packets are handled
independently.

By rate-limiting the super-packet generation process, thescheduler controls the capacity/delay
tradeoff at the wireless link. The scheduler transmits a single packet in a fixed-length time slot,
which can be implemented, e.g., through a simple token-based traffic shaping. With this policy,
if the arrival rate exceeds the transmission rate, the packets are queued on average for a half-slot
time, and otherwise, they are forwarded immediately.

1 A sparse subnetwork of the Dartmouth WMN (Section6.4.3) or a grid (Section6.4.4)
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In the chosen delay model [94], a link can sustain an inter-packet delay of 20ms for at most
10 independent flows without dropping packets. For the backbone links, we take a conservative
approach, and rate-limit each egress queue to one packet in 10ms. Since the maximal node degree
is 4, at most 8 (aggregated) packets contend for each shared ingress link in 20ms, thus approximat-
ing the behavior of eight concurrent VoIP flows. The average queueing time is therefore 5ms for a
fully backlogged egress queue.

The maximal capacity of the backbone links is constrained bythe number of RTP packets that
can be multiplexed into a single super-packet. The size of anRTP packet with a G.729 voice
payload is 60 bytes. Assuming the super-packet size of 1500 bytes, without RTP header compres-
sion [58], the number of voice packets that can be multiplexed into a super-packet is 25. Since a
single egress queue schedules transmissions each 10ms (twice the packet arrival rate in a single
flow), its capacity is2 × 25 = 50. Hence, the capacity of a shared ingress link is4 × 50 = 200
flows (4.7 Mbps bandwidth).

Finally, the gateway connection introduces its own delay, which depends on the wired link’s
capacity. Since a typical WMN is expected to use an availableinexpensive wired infrastructure,
assume the use of the ADSL technology, in which the uplink is the bandwidth bottleneck. The
fastest available ADSL2 uplink rate today is 3.5 Mbps. We assume that it supports 120 flows (2.75
Mbps effective bandwidth), and employ the M/M/1 model for delay calculation.
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Chapter 7

QMesh Implementation

Wireless mesh networks, or WMNs, is a rapidly maturing technology for providing inexpensive
Internet access to residential areas with limited wired connectivity [16]. While initially designed
for small-scale installations (e.g., isolated neighborhoods), WMNs are now envisioned to provide
citywide access and beyond [15]. Modern mesh networks are expected to handle mobile applica-
tions with diverse QoS requirements like VoIP, VoD, and gaming [58].

WMN users access the Internet through a multihop backbone offixed wireless routers. Each
external user associates at all times with a single router that provides it with access to the mesh,
which is called the users access point, or AP. Some of the routers, called gateways, are connected
to the wired infrastructure. A common practice in small-scale WMNs is always assigning each
user to the nearest gateway (e.g., [18]). In this approach, gateway handoffs (macro-mobility) are
tightly coupled with link-layer AP handoffs (micro-mobility). This solution cannot adapt to load
peaks within the mesh, thus limiting its capacity.

This shortcoming can be resolved by assigningsomeusers from congested areas to distant
gateways, hence avoiding congested paths, providing an improved quality of service (QoS), and
eventually increasing the WMN’s capacity. Intelligent gateway assignment policies must balance
between the impact of link loads and network distances – in other words, performload-distance
balancing[38]. Note that gateway selection is a traffic engineering policy, rather than a routing
extension. It can work on top of any routing protocol within the WMN.

We designed and implemented QMesh (Section7.1) – a prototype QoS mesh network that
features seamless mobility support and load-distance balancing. QMesh’s external users perform
a minimum of standard configurations, without installing additional software at their side. The
QMesh infrastructure is based on inexpensive Windows XP desktops equipped with wireless cards,
which makes it an attractive choice for office environments.The routing software deployed on the
infrastructure nodes is a small-footprint device driver (to the best of our knowledge, this is the
first WMN solution implemented in the Win32 kernel space). QMesh is managed by a centralized
controller, which intelligently associates wireless users with access points and gateways. The
QMesh code (driver and management software) and documentation are available for download
at [8].

QMesh was deployed on a testbed of 7 mesh nodes, including twogateways. It supports a
variety of real-life applications, including VoIP and video streaming. Performance measurements
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(Section7.2) validate our approach to mobility and user assignment.

7.1 QMesh Architecture

The QMesh routing software is implemented on top of the Mesh Connectivity Layer (MCL) – an
ad-hoc routing and link quality measurement software package developed at Microsoft Research
that features the LQSR routing protocol [5, 51]. Architecturally, the MCL code is a Win32 NDIS
driver that elegantly plugs into the host networking stack between the network and link layers. It
abstracts the WMN’s multihop nature from upper-layer software, which handles the entire mesh as
a single L2 segment. MCL requires installing its code on all network nodes. QMesh extends it with
an access infrastructure functionality, namely, with MAC address resolution and unicast/broadcast
traffic forwarding for non-LQSR users.

The QMesh controller is a user-space software that runs on a selected mesh router, and com-
municates with the other routers through LQSR extensions. It collects the wireless user location
information from the access points, and associates every WMN user with a single AP and a sin-
gle gateway. The controller can be instantiated with multiple assignment policies, encompassing
nearest-neighbor assignment, perfect load-balancing, and more sophisticated algorithms that con-
sider distance and load together (e.g., [38]). Fig. 7.1 illustrates the QMesh architecture.

7.1.1 Seamless Mobility

In QMesh, the mobile user’s current AP functions as its default IP router. The user is forced to route
all its traffic via this AP (a sandbox subnet) by setting the subnet mask to 255.255.255.255. The
two nodes communicate directly, through a 802.11 ad-hoc link. (The alternative of implementing
APs as transparent bridges operating in the 802.11 infrastructure mode was infeasible, due to a
shortcoming of most Win32 wireless card drivers that do not support the promiscuous mode – the
same problem was reported in [5]).

The assignment mechanism works as follows. As a mobile user initially associates with the
mesh or moves away from its original AP, it gets discovered byone or more APs that intercept
the user’s broadcast control traffic - e.g., periodical DHCPrequests. These APs enter the user’s
MAC address into theirlocal user cache, or LUC, which they periodically send to the controller.
The latter computes the (possibly new) assignment, and disseminates it in the network. All WMN
nodes store the user-AP associations in aglobal user cache, or GUC, to maintain address resolu-
tion within the mesh infrastructure segment. We explored 3 methods of communicating the AP
association back to the mobile node, seamlessly to the user:

Gratuitous ARP: originally suggested in [18]. All mobile users perceive the WMN as an om-
nipresent virtual access point. Its IP address is pre-configured by the user. Upon the initial associ-
ation or handoff, the prospective access point manipulatesthe mapping of this virtual IP address to
a MAC address, through publishing its own link-layer address in an unsolicited address resolution
(ARP) reply (Figure7.2(a)). The downside of this approach is that ARP is a low-levelprotocol
that cannot be secured (e.g., encrypted).
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Figure 7.1:The QMesh network architecture: users, mesh routers, and a centralized con-
troller.

ICMP Router Discovery Protocol (IRDP): manipulating the default router’s IP address it-
self [50]. The mesh AP assigned to the user publishes its own network address as the user’s default
gateway, using a specific ICMP packet. IRDP can be enabled at aWindows computer through a
dedicated DHCP request.

DHCP Reconfigure: manipulation of the default gateway’s IP address through a dynamic up-
date triggered by the DHCP server [95]. This option is not supported by the Windows XP host
networking stack, and we chose not to implement it.

Unlike the previous implementations (e.g., [18]), QMesh does not employ any reliable mes-
saging infrastructure for forwarding in-flight packets during the AP transition. Instead, we opt for
a simple and lower-latency kernel-level implementation. Our performance measurements validate
this approach.

7.2 Performance Evaluation

We first study the performance impact of access point handoffs, as follows. We measure the fluctu-
ations of jitter in a G.711 VoIP stream emerging from a mobilenode upon two AP transitions. The
jitter values stabilize in the acceptable range (below 20 ms) within 200-400 ms (Figure7.2(b)),
thus supporting the findings in previous WMN implementations [18, 58].

The next experiment demonstrates the importance of balancing loads and distances in user
assignment. We measure the Mean Opinion Score (MOS) – the standard VoIP quality metric
that combines the loss rate, jitter and delay experienced bythe flow’s packets [7]. MOS values
range from 0 to 5; values above 4.0 are assumed good. We consider a setting in which up to five
wireless users are closer to one access point, which is also agateway, than to any other mesh node.
Therefore, assigning them to this nearest neighbor (the setup is depicted in Figure7.3(a)) results in
overloading the access link, and hence, in a degraded MOS. Onthe other hand, routing some flows
through a more distant AP/gateway pair reduces the congestion, at the expense of an increased
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number of hops (Figure7.3(b)). The measurements depicted in Figure7.3(c) show that the second
option can sustain all five flows within an acceptable quality, while the first one can handle only
three.
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Chapter 8

Conclusions and Future Work

We explored a distributed infrastructure for QoS provisioning to mobile users and groups thereof,
through multiple geographically dispersed service points. This Mobility and Group Management
Architecture (aka MAGMA) can prove highly valuable to many next-generation mobile network-
ing technologies, ranging from wireless mesh networks (WMNs) for broadband Internet access to
IP multimedia subsystems (IMS) for beyond-3G converged cellular/IP networks. In this context,
the key challenges wereadaptiveness(i.e., handling dynamic phenomena such as user mobility,
flash crowds etc), andscalability (i.e., coping with millions of users through thousands of ser-
vice points). We focused on vital algorithmic aspects of this framework, as well as on prototype
implementations of our algorithms in real systems.

8.1 Conclusions

Chapter3 studied a problem of service point assignment to mobile users or user groups in a dis-
tributed infrastructure with multiple service points. This problem will naturally arise in several
emerging practical environments, in which the cost of stateful application handoffs is significant.
We have provided a rigorous theoretical study, which includes competitive online algorithms and
a lower bound on the competitive ratio of deterministic algorithms. Following this, we studied
the performance of the proposed algorithms when applied in an urban WMN and in a wide-area
chatroom service. We gave practical algorithms that approximate the optimal performance more
closely, and scale well with the network size. Finally, we demonstrated that a very limited, and
even noisy, prediction of the user’s future motion allows toconstruct algorithms with near-optimal
performance.

Chapter5 introduced a novel load-distance balancing (LDB) problem, which is important for
delay-sensitive service access networks with multiple servers. In such settings, the service delay
consists of a network delay, which depends on network distance, and a congestion delay, which
arises from server load. The problem seeks to minimize the maximum service delay among all
users. Theα−LDB extension of this problem is achieve a desiredα-approximation of the opti-
mal solution. We presented two scalable distributed algorithms forα−LDB, Tree andRipple,
which compute a load-distance-balanced assignment with local information. We studiedTree’s
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andRipple’s practical performance in a large-scale WMN, and showed that the convergence times
and communication requirements of these algorithms are both scalable and workload-adaptive, i.e.,
they depend on the skew of congestion within the network and the size of congested areas, rather
than the network size. Both algorithms are greatly superiorto previously known solutions.Tree
employs a fixed hierarchy among the servers, whereasRipple requires no pre-defined infrastruc-
ture, scales better, and consistently achieves a lower cost.

Chapter6 introduced QMesh, a novel scalable solution for dynamic assignment of mobile users
to gateways in a large-scale WMN, which jointly takes into consideration factors like load peaks,
mobility, and application-specific handoff costs. QMesh can be instantiated with application-
specific handoff policies. We studied QMesh through extensive simulation in different settings
of a wide-area urban WMN. Our results show that QMesh scales well (constant to logarithmic
overhead) and adapts to network loads. It satisfies application QoS requirements for service ca-
pacities significantly exceeding those of traditional policies.

Finally, Chapter7 presented a prototype implementation of QMesh within the Win32 kernel
that features (1) native support of standard 802.11 clients, (2) transparent mobility, and (3) plat-
form for intelligent user-to-gateway assignment. Performance evaluation conducted over a real
testbed demonstrates the feasibility of QMesh’s approach to handoffs, as well as the importance of
balancing distances and loads in assigning users to WMN gateways.

8.2 Future Work

The work on MAGMA can be extended to a variety of new research directions.

8.2.1 Dynamic Infrastructure Deployment

MAGMA explored a fixed service infrastructure, e.g., staticWMN gateways. However, many
new applications require extending this perception. For example, rescue force applications require
rapidly deploying an infrastructure for supporting mobileteams. In this context, the speed of
self-configuration (including the services) is critical. The deployed infrastructure can be either
externally deployed, or use part of the users as supernodes.This new model implies a host of novel
service placement and selection problems, which we briefly sketch below.

LD-balanced Clustering Problems: Consider, e.g., the following extension of the load-distance
balancing problem (Chapter5). In the previously studied model, server locations were known a-
priori – e.g., located on a grid, or selected via clustering based on distances between users (Chapter
6). This model can be extended tojointly perform service placement and assignment – a novel
variation of the well-studied K-center, K-median and K-means clustering problems [78]. The
key algorithmic issue is whether a joint service placement and assignment can improve upon the
applying these steps separately (the latter approach was adopted, e.g., by [47]).

For example, the LD-balancedK-center problem is defined as follows. Considern usersU =
{u1, . . . , un} in a (metric) space, in whichD(ui, uj) stands for a network distance betweenui and
uj. A service k-partitionis defined as a set of pairs{(U1, s1), . . . , (Uk, sk)}, such that (1)si ∈ Ui
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for all i, (2)Ui
⋂

Uj = ∅ for all i 6= j, and (3)
⋃

1≤i≤k Ui = U . In this context, usersi is selected
to serve all users inUi (including itself).

Consider a non-decreasing congestion functionδ : N→ R
+, which is uniform among all users.

A partition isoptimalif it minimizes

max
1≤i≤k

[δ(|Ui|) + max
u∈Ui

D(u, si)]

(note that the use ofδ differentiates between this problem and the traditionalK-center problem).
Using theL1 andL2 norms instead ofL∞ leads to similar definitions of LD-balancedK-median
andK-means problems. An initial result indicates that an optimal clustering is not necessarily
spatially convex [35].

Local and Mobile LD-balanced Clustering: Similarly to Chapter5, we are looking for scal-
able local distributed solutions for LD-balanced clustering problems. Recently, multiple works
addressed distributed mobile clustering without considering the impact of load, e.g., [60, 71]).

A particularly interesting direction is proposingmobility-adaptivesolutions, which trade clus-
tering perturbation for the amount of user motion. Intuitively, a system designer could expect that
a small variation in user locations will result in small changes incurred to clustering. However, this
expectation cannot be fulfilled if the system is close to its maximal capacity, even when the server
locations are known in advance.

Relaxing the requirement for selecting exactlyk centers (i.e., allowing up to(1 + ε)k servers)
can be critical for maintaining a smooth LD-balanced clustering even in the presence of mobility.
In this context, we plan to capitalize on recent results fromthe computational geometry community.
For example, Har-Peled’s work on clustering motion [64] demonstrates how to achieve a relaxed
k-clustering of points whose movement is described by polynomial functions, under traditional
definitions. This paper, as well as other works (e.g., [85]), uses acoresettechnique to improve the
scalability of computation-intensive clustering algorithms. Instead of running an algorithm on the
entire input, it selects its small representative subset, called coreset, and computes an approximate
solution of the original problem using it. We propose to explore the applicability of coresets to LD-
balanced clustering. Yet another technique that can be borrowed from computational geometry for
efficient mobile center management is kinetic data structures (KDS) [60]. KDS allow maintaining
the mobile center’s trajectory and speed (also termed as flight plan) when the mobile nodes’ flight
plans are either known in advance, or change at discrete times.

Churn-Resilient Service Placement:Spontaneous node joins and crashes, also calledchurn, are
a commonplace phenomenon in dynamic distributed systems. Contrast to mobility, which leads
to predictable changes in workload, churn (i.e., flash crowds) can be very hectic.Gossipproto-
cols [53, 84], an efficient mechanism for disseminating data in a dynamicnetwork, can be applied
to spread the locally monitored churn indications. The gossip approach can be of independent
value even for one-shot problems like distributed load-distance balancing, in which it can be used
instead of the clustering approach adopted in Chapter5.
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8.2.2 New Approaches to Old Problems

Analysis of Greedy LD-Balanced Assignment: Chapter5 presented a 2-approximation algo-
rithm, BFlow , for the load-distance balancing problem.BFlow , which is based on multiple
maximum flow computations in a bipartite user-server graph,has a large (although polynomial)
time complexity. We examined the following alternative heuristic, which is both simple and fast:
traverse a random permutation of users, and greedily assigneach user to the server that minimizes
this user’s delay. Empirical experimentation showed that this heuristic consistently produced better
results thanBFlow , for all the studied workloads. A rigorous analysis is important for understand-
ing this behavior. Currently, we can only analyze two extreme cases – a uniform workload, and a
peaky workload (but not the combination of the two).

Analysis of the QMesh Assignment Policy:We would like to to theoretically justify the heuristic
distributed probing policy employed by QMesh (Chapter6), which combines randomized probing
at growing distances with greedy server choices. It would interesting to analyze this policy from
the game-theoretic view, demonstrate its price of anarchy (PoA) and price of stability (PoS) met-
rics [89], and confirm the empirical observation that QMesh always converges to a stable assign-
ment.
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