Dynamic Service Management
In Infrastructure-Based Mobile Networks

Edward Bortnikov

Dynamic Service Management
in Infrastructure-Based Mobile Networks

Research Thesis
Submitted in Partial Fulfilment of the
Requirements for the
Degree of Doctor of Philosophy

Edward Bortnikov

Submitted to the Senate of
the Technion — Israel Institute of Technology
Tishrey, 5769 Haifa September 2008

The Research Thesis was done under the supervision of
Prof. Israel Cidon and Prof. Idit Keidar
in the Department of Electrical Engineering.

The generous financial help of the Israeli Ministry of Sce(shkol Scholarship), the Prof.
Jacobs/Quallcom Foundation, the Prof. Andrew and Erna Niterbi Foundation, the Intel
Corporation and the Technion is gratefully acknowledged.

Acknowledgements

| am profoundly thankful to Israel and Idit for so many thingearned from them in the past
four years. Each of them, in a very special way, was a perfectton and friend. Working with
them was fun, every single moment, despite the ups and thasdolank you for your patience,
casualty, and confidence in success.

Many thanks to the staff of the Networking Lab and the SofeMaab, especially Yoram and
llana, for their support all the way long. | also thank all tnredergraduate students whose work
contributed to my research.

| thank my supporting family, and especially my grandfatBenjamin, for whom this degree
was so important. Thanks to my loving wife Vita for helping nealize that | need to earn it. Last
but not least, thanks to our three sons — Guy, Amit and Yuvalst-for being there, day by day,
and making us happy.

Contents

Abstract 1
Notations and Abbreviations 3
1 Introduction and Background 4
1.1 NoveltyandRelatedWork 6
2 Methodology 8
3 Nomadic Service Assignment 10
3.1 Related Work. 12
3.2 SystemModel 14
3.3 An Optimal Offline Algorithm 14
3.4 Online Server Assignment 16
3.4.1 A Lower Bound of: on the Competitive Ratio. 16
3.4.2 DTrack - &2k-Competitive Online Algorithm. 17
3.4.3 CTrack - an Efficient Online Algorithm 19
3.4.4 OpportunisticHeuristics 20
3.5 Case Study: MobileUsersinaWMN 20
3.5.1 Motion-Aware Heuristics 24
3.6 Case Study: Wide-area Chatroom Service 24
3.7 Analysis. e 26
3.7.1 A Competitive Analysisof DTrack-RR. 26
3.7.2 A Competitive Analysisof CTrack-RR. 30
3.7.3 A Competitive Analysisof DTrack-B. 31
3.7.4 Non-Competitiveness of Opportunistic Algorithms 32
4 The Load-Distance Balancing Problem 34
4.1 Related Work. e 35
4.2 Problem Definition. 35
4.3 Min-Max Load-Distance Balancing. 36
4.3.1 ComputationalHardness. 36

4.3.2 BFlow —a 2-Approximation Algorithm. 38

4.3.3 Optimal Assignment on a Line with Euclidean Distances. 39

4.4 Min-Average Load-DistanceBalancing 41
4.4.1 The Optimal Algorithm 41
4.4.2 Improving the Running Time on a Line with EuclideantBiges 42

Scalable Load-Distance Balancing 43

5.1 Related Work. 44

5.2 Definitionsand SystemModelo oL oo 45

5.3 Distributed LD-Balanced Assignment 46
5.3.1 Tree -a Simple Distributed Algorithm. 47
5.3.2 Ripple - an Adaptive Distributed Algorithm. 48

5.4 Numerical Evaluation 53

5.5 Analysisand Extensions e 54
5.5.1 Correctness and Performance Analysisof Tree. 54
5.5.2 Correctness and Performance Analysisof Ripple. 56
5.5.3 Handling a Dynamic Workload. 59

QMesh 60

6.1 Related Work. 62

6.2 DesignGoals. e 63

6.3 QMeshFramework 63
6.3.1 Network Architecture 63
6.3.2 Gateway AssignmentProtocol. 64

6.4 Evaluation. 68
6.4.1 VoIP Trafficand CostModel 69
6.4.2 AssignmentPolicies L 69
6.4.3 Campus Scale Simulation (CRAWDAD) 70
6.4.4 City Scale Simulation. o 71
6.4.5 Service-Specific Handoff Policies. 76

6.5 Delay ModelinginMeshSim 78

QMesh Implementation 80

7.1 QMeshArchitecture. 81

7.1.1 SeamlessMobility. 81
7.2 Performance Evaluation. o 82
Conclusions and Future Work 84
8.1 ConcClusions. e 84
8.2 Future Work. e 85

8.2.1 Dynamic Infrastructure Deployment. 85

8.2.2 New Approachesto Old Problems. 87

List of Figures

1.1 Application services deployment at the edgeofaWMN.. 5
3.1 DTrack—RR - an Online Algorithm for Server Assignment. 18
3.2 CTrack—RR and DTrack— RR with o = 1 do not scale well with the network

SIZE. . . e 21
3.3 Choosing aj value for DTrack—B with a = 1.0. The values between 0.2 and

1 exhibit very close behavior and scale well with the networlsize. 22
3.4 Scalability of CTrack—F', DTrack—F’', and DTrack— B in a WMN with mobile

users,a=1.0and S =1.0. e 23
3.5 Scalability of CTrack—F', DTrack—F', and DTrack— B in a WMN with mobile

users, speed=10 m/s, with differentv values. 23
3.6 Percentage of useful hold cost accesses per secondforack— /' and DTrack— B

witha=1landg=1. e 23
3.7 Scalability of the motion-aware algorithms in a WMN with mobile users. . . . 25
3.8 Scalability of CTrack—F', DTrack—F andDTrack— B in a wide-area chatroom

application service,o =1.0and 3 =1.0. 26
3.9 Definition of phases forDTrack—RR. v v i v i 27
3.10 An example of hold costs for whichDTrack— F’ and DTrack— B with o = 3 are

Q(C)-competitive. 33
4.1 Reduction from exactsetcovertoLDB-D.. 37
4.2 The bipartite graph for a single phase ofBFlow. 38
4.3 Switching the assignment of an order-violating pair(uy, us). 40
5.1 Example workloads for the algorithms and clusters formed bythemina4 x 4

grid with Hilbert ordering. (a) A sample clustering {A, B, C, D, E'} produced

by Tree. (b) A hard workload for Tree: 2NN users in cell 8 (dark gray), no

users in cell 9 (white), and N users in every other cell (light gray). (c) A

sample clustering{ A, B,C, D, E'} produced byRipple. 48
5.2 Ripple’s scenarios. Nodes in solid frames are cluster leaders. D@d ovals

encircle serversinthesamecluster. oL 50
5.3 Ripple’s pseudo-code: singleround.. L. 52

5.4

5.5

5.6

6.1

6.2
6.3

6.4
6.5

6.6

6.7

6.8

6.9

Sensitivity of Tree(e)’s and Ripple(e)’s cost, convergence time (rounds), and
locality (cluster size) to the slack factor, for mixed user wrkload: 50%uni-
form/50%peaky (10 peaks of effective radius 200m).
Scalability of Ripple(0.5) and Tree(0.5) with the network’s size (log-scale),
for mixed workload: 50% uniform/50% peaky (10 peaks of effedive radius
200M). . L e
Sensitivity of Tree(0.5)'s and Ripple(0.5)’s cost to user distribution. (a) Vary-
ing percent of users in congestion peaks, mixed workload: (@D-p)% uni-
form/p% peaky (10 peaks of effective radius 200m)p < p < 100. (b) Vary-
ing effective radius of congestion peaks, mixed workload: @6 uniform/50%
peaky (10 peaks of effective radiug?, 500m < R < 5000m).

Handoff of a VoIP session between two NAT gateways in QMesha Initial
assignment to GW1 by access point AP1. (b) Micro-mobility taaccess point
AP2, in parallel with monitoring and probing. (c) Macro-mobility to gateway
GW3. GW2 is congested and consequently not selected..
The QMesh gateway assignment.
Selecting candidates for a probe in the QMesh gateway assigrent protocol.
The number of random probes in each phase i = 1. The selection process
stops after probing the third gateway that fails to provide abetter QoS than

thesecond one. s

The Dartmouth network map and gateway placement..
Scalability evaluation of the gateway assignment algoritims in an unplanned
campus WMN, with topology and user mobility traces drawn from the Dart-
mouth CRAWDAD publicdataset.
Urban Simulation Settings: (a) The city’s topology (downtavn and four neigh-
borhoods) and the gateway grid. (b) The random process behththe AWWP

mobility model.

Scalability evaluation of the gateway assignment algoritims in a citywide
WMN, for a near-uniform distribution (RWP model).
Scalability evaluation for a clustered distribution (AWWP model): (a) Loss
ratio — morning. (b) Handoff frequency (average number of handoffs per
minute) —morning. (c) Lossratio—day.
Average loss ratio distribution by the time of day, for the a «ewed workload
of 600 users (AWWP mobility model): (a) Comparison between assignment
policies, (b,c) Comparison between the mostly stationarybglow 20% mobil-
ity) and the mostly mobile users, for two separate policies.

6.10 Load distribution on mesh links in congested areas: most offte congestion

happens close to the gateways.

6.11 Studying the effect of QMesh’s tuning parameters: (a) Scalaility of the num-
ber of probes per minute with load, (b) Impact of increasing he number of
simultaneous probesP. (c) Impact of handoff threshold for an application
with a high handoff cost (50000): aggressive policy{ = 10) vs. conservative
policy (H = 10000). o o

7.1 The QMesh network architecture: users, mesh routers, and aentralized con-
troller. . . . e

7.2 AP handoff management in QMesh: (a) Gratuitous ARP-based hadoff mech-
anism. (b) Fluctuations of VoIP jitter caused by AP handoffs

7.3 Comparison of the (a) nearest-neighbor and (b) load-distace balancing as-
signment policies, for the VoIP application, in terms of theMean Opinion
Score (MOS) metric.. e

List of Tables

5.1 Ripple’s messages, constants, and state variables..

6.1 Methods and parameters deployed at the mesh nodes by applitt@ns using

Abstract

The paradigm of delivering real-time applications throwdpuds of geographically distributed
service points is becoming increasingly attractive for nebperators. Our research explores
distributed management of quality of service (QoS) reguérts through this infrastructure. The
anticipated system scale and the need to adapt to changnayibe of mobile users raise novel
problems and call fotocal and adaptivedistributed optimization algorithms behind the cloud

framework. . . . o
We focus on problems of dynamic assignment of mobile usetgeoups thereof tapplication-

levelservice points. In contrast with link-layer associatiomgich are primarily driven by physical

proximity to the infrastructure, application session gssient must jointly consider network dis-
tances, congestion, and handoff costs to optimize the Qtfilong run. We combine theoretical
approaches with simulation and prototype system impleatiemts.

We first consider a single-user case, namely, the problenymdrdic balancing between the
desire to always assign the user to the closest server, ameéu to reduce the number of handoffs.
We propose an optimal offline solution, and a tightly compegiand efficient online algorithm,
DTrack. We also demonstrate motion-aware algorithms, vaahieve a near-optimal result using
a very limited and noisy movement prediction.

Next, we address the problem of assigning multiple usereteess. This assignment must
jointly consider loads and distances, which we call loagtatice balancing, or LDB. We analyze
multiple flavors of this optimization problem in the cenizald setting, and provide efficient poly-
nomial algorithms for them. Following this, we present alaloke distributed solution, Ripple,
which can use any sequential algorithm as a local buildinglbl Ripple adapts its overhead to
network congestion, and constructs a local assignmentevieepossible.

Finally, we propose a comprehensive handoff managememtefrark, QMesh, which ad-
dresses all assignment factors in the context of a large-saeeless mesh network (WMN). We
perform a comprehensive simulation study of QMesh basedahlocation and mobility data,
and demonstrate its significant advantage over traditiapptoaches. We also present a QMesh
software prototype implemented within the Win32 kerneljalitharnesses multiple desktops as a
QoS-aware WMN infrastructure.

Notations and Abbreviations

AP
ARM
ARP
AWWP
CDN
DHCP
GW
ICMP
IP
IRDP
LAN
LDB
LQSR
MAC
MAP
MCL
MMOG
MOS
MPLS
MTS
NAT
NDIS
QoS
RTP
RTCP
RWP
SIP
SNR
TCP
TE
UDP
\VoIP
WAN
WLAN
WMN

Access Point
Application Resource Monitoring
Address Resolution Protocol
Alternating Weighted WayPoint
Content Delivery Network
Dynamic Host Configuration Protocol
Gateway

Internet Control Message Protocol
Internet Protocol

ICMP Router Discovery Protocol
Local Area Network
Load-Distance Balancing

Link Quality Source Routing
Media Access Control

Mobile Anchor Point

Mesh Connectivity Layer
Massively Multiplayer Online Game
Mean Opinion Score
MultiProtocol Label Switching
Metrical Task System

Network Address Translation
Network Driver Interface Specification
Quality of Service

Real-Time Protocol

Real-Time Control Protocol
Random Waypoint

Session Initiation Protocol

Signal to Noise Ratio
Transmission Control Protocol
Traffic Engineering

User Datagram Protocol

\Voice over IP

Wide Area Network
Wireless LAN

Wireless Mesh Network

3

Chapter 1

Introduction and Background

The perception of networked service delivery to mobile si$&rs been rapidly evolving over the
last decade. There is strong evidence that future wirelesgank infrastructures will conform
to the TCP/IP architecture and its related supporting mashas for quality of service (Qo0S),
and mobility. TCP/IP is being adopted by emerging standtodbeyond-3G cellular networks
[91]. This trend enables the convergence of the traditionallgeroriented cellular networks with
data access services over the global Internet. At the sane libw-cost and high-speed wireless
access to IP networks is becoming widely available via 8D2(WiFi) and 802.16x (WiMax)14).
The latest generations of these standards offer increasbdityyand QoS support, allowing the
proliferation of real-time multimedia services over titamhal data networks.

Following the recent trend in wireline networkd],| mobile operators are expected to deploy
QoS-sensitive services at the network edge. This appraachiges a revolutionary improvement
of user experience and scale-up of service capacities aehpa traditional data-center architec-
tures. Consider, for example, wireless mesh networks, orN&NL6] — a growing promise for
broadband Internet delivery to the areas of limited wirednetivity. WMN users access the In-
ternet through a multi-hop backbone of fixed wireless rautd@ihe current perception of a router
connected to the wired network, called gateway, is shatggdcess link among multiple users.
We envision extending this functionality to a wide variefystateful session-oriented applications,
e.g., a media cach&T], a VoIP relay B7], a groupware (e.g., push-to-talk) hub3], an online
gaming server42], or a mix-and-match thereof (see Figuré for illustration).

This dissertation, which embodies most of the contributbthe Mobility and Group Man-
agement Architecture (MAGMA) research projett], addresses the challenge of managing the
complexity of mobile service provisioning through a laggale distributed infrastructure. In this
context, dynamic assignment of mobile users or groups dféweapplication service points raises
many novel algorithmic aspects. For example, it must jgiotinsider a variety of factors that af-
fect the QoS, namely, network distances between users aretsecongestion, and handoff costs.
Real-time assignment decisions must handle an inherdnbfazomplete information dictated by
dynamic phenomena (user mobility, churn, flash crowds egWell as by the anticipated system
scale (thousands of service points and millions of usets@s@& harsh constraints call focal and
adaptivedistributed algorithms that approximate global optimi@atin presence of uncertainty.
We propose rigorous solutions, and complement them witbnske simulations and prototype

4

Game server ghub, NAT j
Media cache - p—

Figure 1.1:Application services deployment at the edge of a WMN.

implementations in real systems.

In Chapter3, we consider the problem of dynamically assigning appbcesessions of mobile
users or user groups to service points. Such assignmentsbalasce the tradeoff between two
conflicting goals. On the one hand, we would like to connede to the closest server, in order to
reduce network costs and service latencies (the impactafesiion is considered negligible). On
the other hand, we would like to minimize the number of cosdgsion migrations, or handoffs,
between service points. We tackle this problem using twoaghes. First, we employ algorith-
mic online optimization to obtain competitive algorithmbhaege worst-case performance is within
a factor of the optimal. Next, we present scalable oppostimvariations of these algorithms,
which asymptotically improve the average-case performarféinally, we demonstrate motion-
aware algorithms, which achieve a near-optimal resultguairery limited and noisy movement
prediction. We conduct case studies of two settings wherhk algorithms are required: wireless
mesh networks with mobile users, and wide-area groupwanigcagions with or without mobility.
The results of Chapteétappear in 7] (preliminary version in $6]).

In highly utilized networks, QoS-sensitive service assignt should jointly handle network
distances and congestion. Chagentroduces doad-distance balancin¢g_DB) problem in as-
signing users of a delay-sensitive networked applicatiogetrvers. We model the service delay
experienced by a user as a sum of a network-incurred delaghwlepends on its network distance
from the server, and a server-incurred delay, stemming tfa@rioad on the server. The problem
is to minimize the maximum (alternatively, average) sex\delay among all users. We study this
problem in the centralized setting (Chap®®r and further focus on its min-max variation in a
distributed setting (Chapt®).

We prove the NP-hardness and hardness of approximatioreahth-max LDB problem in
Chapter4. Following this, the best possible 2-approximation altjon for general network dis-
tance functions is presented. We also demonstrate polyalaigorithms for the min-average LDB

problem, and the special case of min-max LDB in which netvaiskances are Euclidean distances
on aline.

Chapter5 addresses the challenge of finding a near-optimal min-ma BBsignment in a
scalable distributed manner. The key to achieving scatiaslusinglocal solutions, whereby each
server only communicates with a few close servers. Noteghiewythat the attainable locality of a
solution depends on theorkload— when some area in the network is congested, obtaining a near
optimal cost may require offloading users to remote serwengreas when the network load is
uniform, a purely local assignment may suffice. We presgarahms that exploit the opportunity
to provide a local solution when possible, and thus have conication costs and stabilization
times that vary according to the network congestion. Weuatel our algorithms with a detailed
simulation case study of their application in assigningictzosts to Internet gateways in an urban
WMN. Preliminary results of this research appeardg][

Chapter6 jointly considers load peaks, user mobility, and handofigiges, thus providing
a unified approach to cost-driven handoff management (Eh8ptand load-distance balancing
(Chapterst and5). We focus on very large mobile WMN environments, and prep@$/lesh, a
fully distributed framework for user-gateway assignme@Mesh runs inside the WMN, and is
oblivious to underlying routing protocols (a traffic engeneg approach). It employs a scalable
and adaptive probing policy for LD-balanced gateway s&acivhich is fundamentally different
from the approach taken in Chapter We evaluate QMesh using realistic delay models through
an extensive simulation (mostly of VoIP) in two settings) &luniversity campus network, with
user mobility traces from the public CRAWDAD datasg}, [and (2) a large-scale urban WMN.
Simulations demonstrate that QMesh achieves significaBti@provements and network capacity
increases compared to traditional handoff policies, auodtilate the need for intelligent gateway
assignment within the mesh. The results of Chatgppear in 39].

Finally, we present a partial prototype implementation dfi€gh (Chapter7) — a software
package that allows utilizing multiple geographically tseeed Windows desktops as a wireless
mesh network infrastructure with seamless user mobilippsut. This infrastructure supports its
users through standard protocols, and does not requireli@my software installation. QMesh is
implemented as a Windows XP driver, on top of the Mesh ComvigcLayer (MCL) toolkit from
Microsoft Research that provides basic routing capaéditiTo the best of our knowledge, this
is the first mobile mesh solution implemented within the Vi@rk&rnel space. The results of this
chapter appear ird)].

All in all, our work makes multiple contributions to the studf managed mobile services.
Chaptei8 discusses the conclusions from our research and outlihe®fdirections.

1.1 Novelty and Related Work

The high-level goal of this work is contributing to the thgometworking, and systems commu-
nities in studying the user problems related to assigningil@aisers to service points in a large-
scale environment. We contrast the high-level approacéntélkroughout the thesis to previous
approaches. Specific comparisons of particular results théir related techniques appear in ap-
propriate chapters.

Service placement and selection problems have been widelsessed by the CS-theoretic
community (see, e.g./B| for an extensive survey). More recently, the networkingnoaunity
addressed them as well, e.g., in the context of placing meazhes in content delivery net-
works [67, 87]. The distributed computing community started addrestiegservice location and
association problems in the context of local computatian, studying the tradeoff between the
running time and the achieveable approximation of the ogitoost [70, 79, 71]. In contrast with
the traditional approach, which considered static usedsfatilities, computational geometry re-
searchers addressed dynamic clustering and center nmaintéa in mobile networksSp, 59]. All
of the above focused on optimizing the user-server netwitianices while ignoring congestion
arising among the sessions/flows. A recent research (d4y.47]) addressed this shortcoming
but focused on systems with fairly static users and prelietaaffic requirements, e.g., Internet
backbone. We take this study one step further, by addressaimgle users which create dynamic
workloads.

Handoff optimizations in mobile systems have been studiedtiyin the context of cellular
networks (e.g.,86]). These studies primarily focused on optimizing netwaapacity. In contrast
with application-level assignments, the link-level asations between cellular users and base sta-
tions are primarily driven by physical metrics (e.g., sigsteength, signal-to-noise ration (SNR),
etc), which leave little room for freedom. In addition, veisession handoffs have negligible per-
formance impact, whereas stateful application transstioay incur high costs.

In the theory plane, the interplay between distances, |aat$handoff costs opens an oppor-
tunity to explore new algorithmic problems. We addressiti@tal problems, in which the whole
workload is known a-priori, as well as online optimizatiomplems, in which new inputs arrive
in the course of the executioB3]. For example, optimizing the handoff sequence in the prese
of transition penalties is a variation of the seminal melrtask system (MTS) problen34, 26)].

In this context, a few realistic assumptions about the nitgbihodel allow specific optimizations
that significantly outperform the general-purpose sohgioAs a second example, considering
loads and distances together (the load-distance balapoifem) is a novel approach to service
assignment, which resembles the facility locati@§ jout has a different model, and subsequently,
a different solution. We extend this direction by exploriogd-distance balancing in a large-scale
distributed setting, and presented scalable local alyost

In the system/experimental plane, we pursued practicatipsl(adapted from the theoretical
algorithms) which solve the problems that are not addrebgetie currently deployed solutions.
For example, the prototype implementations of mobile WMh& recently emerged (e.gld]),
adopt the nearest-gateway handoff policy, i.e., each sisetiomatically assigned to the closest
gateway. This simple local approach is acceptable for sgtalle installations, however it fails to
handle hotspots and handover costs in wide-area WMNs ¢lytr@ur work proposes alternative
QoS-sensitive assignment policies which, on one hande seell with network size, and on the
other hand, are simple enough to implement in a real-timeg@mwent (e.g., city-wide WMN).
These policies are verified through extensive simulatiows partially, through a working mobile
WMN prototype.

Chapter 2

Methodology

We evaluate our research through closed-form analysiensite simulations, and prototype im-
plementations. We precisely define the system models amaiaption goals, and rigorously ana-
lyze the proposed algorithms wherever possible. Simulatgimarily cover the studies in which
the worst-case theoretical evaluation does not captureetiigy correctly. In this context, we em-
ploy credible workloads based on public datasgtef widely accepted synthetic mode&H 96).
Finally, a prototype software implementation provides agpiof feasibility of our approach in a
real-time environment, and demonstrates interopengahyiith technologies on the ground.

We employ a variety of theoretical analysis methods, in etaace with the problems studied.
Since the research deals with optimization problems, wepasenour solutions to optimal ones,
and express their quality in terms of approximation fact@e explore the tightness of analysis by
demonstrating lower bounds within a constant factor froenalgorithms’ worst-case performance
guarantees. For example, Cha@Bexddresses service assignment as online optimization,ichwh
no forecast about the user’s future location exists. Weyappinpetitive analysis, which limits
the worst-case ratio between the cost produced by our oalgwgithms and the optimal cost, for
all possible input sequences (mobility patterns). We empitelligent heuristics to improve over
theoretical competitive solutions with worst-case guteas when side information (e.g., motion
prediction) can be exploited. In a one-shot setting, we esngductions to prove computational
hardness, and present a constant-approximation algofghiemn NP-complete centralized load-
distance balancing problem (Chap#®r In some cases, when an optimal solution of an online or
offline optimization problem is well-structured, dynamimgramming is applicable to achieve a
time- and space-efficient algorithm (e.g., Chaptdmand4).

Our algorithms are designed for a distributed environmeerice they address challenges spe-
cific for this area, e.g., the protocols’ progress and teatnom properties. For example, in Chap-
ter 5, we ensure convergence through randomized tie-breakingheAprotocol evaluation side,
specific attention is paid to scalability of solution costigrotocol overhead with network size.
Furthermore, we extend the conceptafrkload-sensitive localityntroduced by 72, 31] — namely,
the algorithms’ convergence time and communication oahikepend on the distribution of work-
load. Hence, whenever the input is not extremely peaky (whappens in most cases), scalable
local computation is enough to provide the desired cost. ratetprotocol scalability versus the
required approximation (Chapt8&rand Chapteb). Finally, we demonstrate that the quality of

assignment produced by scalable randomized probing isstlasogood as that of the best-match
assignment with perfect instantaneous information (Géraj)t

Simulation-based evaluation focuses on average-caserpenfice metrics (either absolute or
relative to the optimum), for realistic workloads. Everytapoint is averaged over 20 to 50 runs.
Our mobility simulations employ the widely accepted randemypoint (RWP) model96] for
nearly-random motion. We introduce the Alternating Wegght¥vaypoint (AWWP) model (Chap-
ter 6, extends §5]), which captures the time-varying non-uniform distriiout of mobile users in
urban environments more realistically. We use the CRAWDADG public tracesd] to model
the real campus network topology, as well as mobility patef office users. In order to allow
for large-scale simulations with thousands of users andsacpoints (Chapted), we developed
a flow-level WMN simulator, MeshSimlp]. Packet-level simulation tool€l| 13] cannot handle
such a scale. MeshSim models the delays incurred to VolIP flasisg a realistic link modeB]
and VolP-specific traffic optimizations in a WMN§]. We use the common Mean Opinion Score
(MOS) metric to evaluate the QoS of VoIP flows.

A prototype mobile WMN implementation (Chaptéyinvolved NDIS driver development in
the Win32 OS kernel, and multiple design decisions to a&hieteroperability with existing tech-
nologies. Our implementation is based on the Mesh Connsgcligyer (MCL) software package
previously developed at Microsoft Researéh |

Chapter 3

Nomadic Service Assignment

Recent advances in network technology, along with the asingg demand for real-time networked
applications, are bringing application service providersleploy multiple geographically dis-
persed service points, or servers. This trend is expectddrtioer expand with the explosion
of new applications and the expansion of services to largerains. In such settings, a given ap-
plication session is typically associated with some seivaeal-time applications, the association
selection is driven by quality of service (QoS) considenadi which may depend, e.g., on the net-
work distance of the user from the server. As many of theskcgpions are becoming increasingly
available to mobile users and dynamic user groups, ther&ttat dictate the server selection can
vary with time. For example, due to a user's movement, a segmn@iding optimal QoS at some
point may later provide poor QoS, rendering it desirable tgrate the application session from
one physical server to another. We therefore believe thatyrfgture distributed service infras-
tructures will employnomadic service pointaind will transparently manage such dynamic session
assignments.

One important domain where nomadic service points can bieitxg to serve mobile users is
wireless mesh networks (WMNSs1§, 51, 69]. WMNSs provide an increasingly popular solution
for Internet access from residential areas with a limitecedinfrastructure. These networks are
built around multiple stationary wireless routers. Som#hefn, called access gateways, are wired
to the Internet. The mesh access protocol typically routegraffic of each mobile node through
a single access gateway. As the node travels away from gmatilocation, the network delay
between it and the gateway grows, and the protocol can te-ttbe traffic through a different
gateway to improve the QoS. For example, a greedy protocoldadways route the traffic via the
closest gateway. However, this optimization is not alwalegaate for highly mobile users, which
suffer from QoS degradation caused by frequent handoffslligient nomadic service assignment
algorithms can mitigate the tradeoff between access deldgession interruptions.

Server assignment quality also has special importancelabooative groupware applications
like instant messaging, push-to-talk, and massively iplalyier online games, where the impact of
a bad association can be magnified with the group’s scaleinfi@structure for these applications
is typically based on servers that both maintain the apjphinastate and act as forwarding proxies.
Intuitively, the server should reside close to the groupistoid in order to serve the group best.
In groups with a highly dynamic membership, the optimal seselection changes as users join

10

or leave the group. Thus, there is a tradeoff between theof@sisignment to a suboptimal server
(e.q., increased delay) and the cost of state transferredwpon the re-assignment.

We study the problem of optimizing the dynamic assignmengasfsions to service points.
Such a service assignment should balance the tradeoff eeteamnecting sessions to the closest
servers at all times, and minimizing the number of sessigrations. We capture this tradeoff by
assuming two types of service costssetupcost, incurred whenever the session is assigned to a
new server, andlold cost, incurred every unit of time the server is being use@ féhmer reflects
one-time expenses like signaling overhead and applicataia transfer, whereas the latter captures
continuous expenses like buffer space, processing powerork latency, and bandwidth. For
simplicity, we focus on the case where the setup costs doargtaxver time, and are identical for
all servers. The hold costs may vary in both aspects. For pbeanm a mobile WMN, connection
transfers are done through wired infrastructure of pratiet performance. In this context, the
setup cost is fixed, since it does not depend on the locatittimeafource and target gateways. The
hold costs, which capture user—gateway distances, arl@ri

The nomadic service assignmenptimization problem is to find a sequence of server assign-
ments that minimizes the total cost. Obviously, we are @gd in theonline version of this
problem, in which the service costs are received on the fly.tré& the problem both as a theo-
retical online optimization problem and as a practical systjuestion. We first handle the generic
nomadic service assignment problem, and then examine & ohosely in two specific case studies
pertaining to specific example domains.

We formally define the problem in Sectidh2 Then, in SectiorB.3, we present amoffline
algorithm,0PT, which computes the optimal solution assuming that thes@rstknown in advance.
This algorithm’s time and space computation complexityrnisdr in the number of serveksand
in the algorithm’s duration. While this result has littleaptical importance, it serves as a baseline
for evaluating the online algorithms described in latetises.

In Section3.4, we study nomadic service assignment as an online optilmizatoblem. A
common metric for an online algorithm is it®mpetitive ratio which is the worst-case ratio be-
tween the cost produced by the algorithm and the optimal a&fstfirst prove a lower bound of
k on the competitive ratio of any deterministic online assignt algorithm. We then present two
simple online algorithmsDTrack (deficit tracker) andCTrack (cost tracker), parameterized by
policies governingvhentransitions happen anghichserver is chosen upon a transiti?Track
transitions from its currently assigned server when theisasaccumulates “significantly more”
hold cost than it would have paid had it been assigned to sonee server, wherearack sim-
ply transitions when the session accumulates “enough” baddl at the currently assigned server.
We show that when instantiated with certain policies, tregerithms achieve competitive ratios
within a constant factor of the lower bound. Specificallyentusing a round-robin (RR) policy to
choose the next assignmebTrack achieves a competitive ratio af, i.e., at most twice as bad
as the lower bound, where@Srack achieves a competitive ratio ¢f + a)k, wherea is an upper
bound on the ratio between the hold and setup costs.

Although, as our lower bound shows, a worst-case cost ragibis linear in the number of
servers is inevitable in the general case, achieving susts ¢® hardly useful for large-scale ser-
vices that employ thousands of servers world-wide. Fromaatmal perspective, it is more in-

11

teresting to examine average costs in common scenariosnarebver, it is highly desirable for
costs not to increase significantly with the number of sexvé¥e address these practical issues
in Sections3.5and 3.6, via empirical case studies of a WMN with mobile users andraerhet
chatroom with dynamic groups, respectively. Interestintiie competitive versions afTrack
andCTrack, which achieve the best worst-case costs, are not very pinogin practice. However,
opportunisticversions of these algorithms, which select the next assgimased on current or
past offered costs (rather than in a round-robin mannehjeae excellent results. Their costs are
at most 50% above the optimum in the average case in the WMMNa (fadely accepted random
waypoint mobility model, e.g.96]), and at most 20% above optimal in the groupware serviae (fo
uniformly distributed users with a Poisson arrival progebtore importantly, this ratio, as well as
the total cost, remains almost constant as the problem catess

There is a tradeoff between our two algorithms: althob@teck achieves better results (lower
overall costs), it has a higher computational time compyexdnd requires discovering the hold
costs of a large number of servers every time unit. In copttasack has a constant per-unit
time complexity, and does not need to probe other servettéircosts except when it decides to
transition.

In Section3.5.1, we propose two motion-aware heuristic algorithms, nametsetAvare
andDirectionAware. TargetAware assumes knowledge of the mobile node’s current target and
speed, whereaBirectionAware only requires the knowledge of the node’s current diregtion
which is used to estimate the target, and speed. These himtisecreceived either from a higher-
level application, or from a positioning system like GPShalgh their lookahead window is quite
small (the node’s next target), both motion-aware algorglyield significant cost improvements.
Their costs are typically within 10% of the optimal, and dihperfect scalability.

3.1 Related Work

Handoff optimizations in mobile systems have been extehsistudied since the early 1990's,
mostly in the context of cellular networks with the adventted GSM standard4p, 86, 88]. This
research targeted increasing network capacity as the prigwal. Handoffs in cellular systems
are driven by physical metrics, like signal strength andgraission power, and are handled at
the link layer. They cannot be avoided when user locatiomggs significantly, and optimizing
their cost is a secondary design goal (e4f]). Our work is fundamentally different, because we
consider the network layer and above. In this context, himdoe optional, they improve the QoS
in the long run, but their cost is substantial. For examplgrating a host connection between two
WMN gateways can affect packet delivery order, and templgrdegrade the TCP performance.
Initial mesh networking research mostly focused on proBlémat are specific to fixed wire-
less, e.g., defining routing metricS]], exploiting the broadcast nature of the mediug][and
harnessing multiple radio interfaces through smart ctagsr design 17]. More recently, Amir
et al. presented a design and implementation of a prototypt¥NWith mobility support fL9].
The algorithms presented in this work can be integratedsnbh a system for inter-gateway hand-
off decisions. Lavi et al. 73] proposed employing an overlay service network for suppgrt
groupware in mobile networks. Their architecture suggeassociating every mobile user with

12

the closest server and efficiently maintaining the group bemship information between multiple
servers. In contrast with this approach, we focus on appdics (including possibly groupware)
that associate a session with a single server.

The problem of dynamic session management was studied incthext of routing virtual
circuits in mobile ATM networks 28], with a similar model of setup and hold costs. However,
these costs were defined per link, and the algorithm had tolel@hether to retain or to release
a redundant link. This model allowed reusing part of thediaker the re-routing, thus allowing
for lower total costs than in our model where no reuse is pssindeed, their algorithms exhibit
better competitive behavior than the best possible for mberservice assignment.

Nomadic service assignment is closely related to the dabsietrical task systeniMTS)
problem B4]. Since the introduction in the early 1990's, this problesefs receiving considerable
attention in the theory community (e.g., s&&,[55] for some new approaches). In this context,
there is a set of states, and a matrix of inter-state transition costs (tls ocba self-transition
is zero). A schedule for a sequence of tasks is a sequenceates sh which these tasks are
processed. The cost of a schedule is the sum of all task miagegold) and transition (setup)
costs. For symmetric cost matrices subject to the triamglguality, there is a deterministic online
algorithm with a competitive ratio ofk — 1, and this bound is tight. Nomadic service assignment
closely resembles a special case of this problem with umifibansition costs, except that in our
problem, the initial assignment always incurs a cost. H@amethe online MTS algorithm34]
makes use of the entire history of setup and hold costs tetistheduling decision, which makes
it impractical to implement. We use a very different algamitic technique, which require3(k)
operations per decision, regardless of the history lengstha specific setting of a WMN with
mobile users, in which the hold costs are defined as usewggtdistances, the computation
overhead of our algorithm can be further reduced by an orflaragnitude, through the use of
spatial data structures.

Mobile user location, a basic service in wireless netwoiks prerequisite for any network
optimization task, including dynamic session manageméfitltiple papers treated the mobile
tracking problem in an online fashion, capitalizing on tfaeleoff between the accuracy in location
estimation and the number of updat@®,[23, 24, 27]. Part of these works consider stochastic
motion [22, 23] while the others make no assumptions on the mobility mo8eme algorithmic
techniques employed in our work bear some resemblance $e th&pers, since we address the
same competitive analysis framework. However, our probteiongs to a distinct application
domain, and pursues different optimization goals.

Optimal center location for a group of users is an instandb@fvell-studiedacility location
problem[78], which given a set of facility locations and a set of custosn@ a metric space,
chooses which customers should be served from which fasibb as to minimize the total service
cost. Facility location was studied as an online probl&i,[and was used for various applications,
including optimizing the delivery of Web content in CDN&7, 87], maintenance of mobile centers
in ad-hoc networksd0] and adaptive server selection in online gamé&$.[The problem differs
from ours in that multiple facilities are used per group, #melonline algorithm is allowed tadd
facilities over time, instead of migrating sessions amaxigtieg ones.

13

3.2 System Model

Consider an application session that can be hosted by angfohaserversS = {so, ..., sp_1}-
The session is assigned to some server at the beginning séds&on but can be re-assigned to a
different server at each discrete time slot.

There are two types of non-negative costs charged for tlseosessetup costhat is paid when
the session is assigned to a new server, including theliarg and dold cost paid for each time
slot the session is assigned to some server. From a sesg@sjgective, different servers offer
different costs at a given time slot, and may also change titettime beginning of each slot. We
denote the setup cost offered by servat timet by setup(s,) and the hold cost byold(s, t).

Theassignment schedutet) in a time intervalZ is a functione : Z — S, which assigns the
session to serverc S at each discrete timec Z. For convenience, we defigt) =1 fort ¢ 7.
We define the set dfansitionson an intervall as

T(o.T)={t|teT A o(t) £ a(t—1)}

In particular, the initial assignment is also considerechadition.
The assignment scheduteon an intervalt;, ¢;) incurs a total hold cost

hold(o, [t1, 1)) = ti hold(o(t),t),

t=t1

a total setup cost

[I>

Z setup(o(t),1),

teT (o,[t1,t2))

setup(o, [t1,12))

and a total overall cost
cost(a, [ti,t2)) = setup(o, [t1,t2)) +hold(o, [t1,ts)).

The optimal nomadic service assignmgmoblem for interval0, 7") is to compute an assignment
schedules* that minimizescost(o*, [0,7)).

The presence of positive setup costs is what makes the pmofbatrivial. Otherwise, the
session would always associate with the server that offexgrtinimum hold cost. Hence, we
always consider positive setup costs.

3.3 An Optimal Offline Algorithm

In this section, we describe an optinadllinealgorithm for the assignment problem, i.e., assuming
that the setup and hold cost functions are known in advanbe. algorithm is linear-time in the
interval lengthl” and the number of serveks

We first identify the structure of the optimal solutieh. Leto?, : [t,7) — S be a lowest cost
schedule among those in whielis the initial assignment, that is; () = s. We observe that if

14

os(t+1) =5 then
COSt(U:,tv [t + 17 T)) = COSt(U:’,t—i-lv [t + 17 T))

In other words, the cost of an optimal schedule[fo# 1,T) that assigns’ att + 1 is identical
to the cost of thdt + 1, T')-suffix of the optimal schedule fdt, 7") with the same assignment.
Otherwise, the global optimality is violated. df = s, thensetup(s’, ¢ + 1) does not contribute to
cost(al,, [t,T)).

The problem can be represented as a layered directed agyapb. Node in layert stands
foro; ,, for1 <i <k, 0 <t < T. There is an edge between every pair of nodet) and
(7,t + 1), which represents a possible transition frerio s; at timet¢. The cost of this edge is
hold(s;,t+ 1) if ¢ = j, andhold(s;,t + 1) + setup(s;, t + 1) otherwise. The optimal solution’s
cost is the weight of the shortest path in the graph. Whilg weight can be computed in linear
time in the number of edges, i.€)(k*T), the time complexity can be optimized kT, by
exploiting the optimal solution’s structure, as we now expl

We define theail contributionfunction fort < 7' as follows:

cost(o},,[t,T)) — setup(s,t) if s =5

. / A
tail(s, s, [t,T)) = { cost(o%,,[t,T)) otherwise

Then,cost (o}, [t,T)) fort < T can be expressed as

cost(ol,,[t,T)) = setup(s,t) + hold(s,t) + migtail(s, s t+1,T))
’ s'e

We definetail(s,s’, [T, T)) £ cost(o:,[T,T)) = 0. Fort < T we get:

COSt(O':’“ [t7 T)) =
setup(s,t) + hold(s,t) +
min(mig cost(oy 1, [t +1,T)),cost(os, 4, [t+1,T)) — setup(s,t + 1)).
s'e ’ ’

An optimal solution can be computed through dynamic prognamg [48] using the above recur-
rence. The algorithm employs a two-dimensional tallele[1..k, 0..7] where an entrfables, t]
holds the value otost (o}, [t,T)) and the identity o’ = o7 ,(t + 1). The table is computed col-
umn by column fromil” — 1 down to 0. Columr{” is initialized by zeroes. During the processing
of columnt, the value of

min cost(oy , [t,T)) = nin Tablels, t]

is computed once to be used in computing all entries of columnl. After the whole table is
filled, the overall optimal cost is computed as

cost(c*,[0,7)) = oJin Tablels, 0],

15

and an optimal schedule is built by tracing the algorithrhgices through the columis .. 7"—1.

The computation of a single table entry requires a constantber of operations thanks to
the pre-computation of the previous column’s minimum cast therefore, the algorithm’s time
complexity isO(kT). The space complexity is al$o(kT") — the table’s size.

3.4 Online Server Assignment

In a realistic scenario, the costs are not known in advanks. i§ especially true for the hold cost,
which can reflect dynamic network conditions like user mibpigroup membership, etc. In this
section, we study server assignment a®aline optimization problem33]. The cost for a time
slot becomes known at the beginning of that slot, and theriéthgno must produce a new scheduling
decision. We restrict ourselves to the case where the sestp are identical and constant, that
is, setup(s,t) = C for all s and¢, whereas the hold costs are dynamic. We denote the schedule
produced by the optimal algorithoPT asc*, and the schedule produced by an online algorithm
ALG aso.

Thecompetitive ratids the common performance measure for online algorithmeutrprob-
lem, an online algorithmLG is calledr(ALG)-competitivef there is a constant such that forall
finite intervalsZ and forall setup and hold costs

cost(o,Z) < r(ALG) - cost(c*,Z) + .

The rest of this section is structured as follows. In Sec8@nl, we show that no deterministic on-
line algorithm can achieve a competitive ratio better tham Section3.4.2 we present a generic
online algorithm calle®Track (deficit tracker). A version of this algorithm termgtirack— R R,
that is,DTrack with round-robin selection of server assignments, aclsieveompetitive ratio of
2k with a certain parameter choicBTrack needs to track the cost of up toservers every time
slot, and may thus have a large control message overheadstriawted implementation. In Sec-
tion 3.4.3 we present a simple and efficient algorithm call@dack (cost tracker), which yields
a competitive ratio of2 + a)k for a certain parameter choice, assuming that a serverslper
hold cost never exceeds’'. The competitive version dfTrack, calledCTrack—RR, probes the
cost of only one server every slot. In Secti®d.4 we present opportunistic versions of these
algorithms, calledTrack—F’, DTrack— F', andDTrack— B, which are not competitive but greatly
improve the cost in thaveragecase, and achieve good scalability.

3.4.1 A Lower Bound ofk on the Competitive Ratio

Theorem 3.1. No deterministic server assignment algorithm can achieeerapetitive ratio of
less thark.

Proof. Considerk symmetric servers that offer the same setup ¢bst 0 and a zero hold cost
each at = 0, that is,hold(s;,0) = 0. Consider the following simple adversary strategy against
any deterministic algorithmLG. WhenALG connects ta; at timet, sethold(s;,t+ 1) = 1. When

ALG disconnects from the server at tifiesethold(s;,t’ + 1) = 0. Regardless of what the online

16

algorithm is, it will have to transition to a different servat some point if it wishes to remain
competitive. This process continues uiti- 1 moves happen. At this point, the adversary stops
the run.

If ALG has visited every server exactly once, détbe its last assignment. Otherwise, there
exists a serves* that has never been picked ByG. The best offline algorithm)PT, assigns the
session to server* at time 0 and never changes the assignment.

OPT pays onlyC for the initial setup, wheread.G payskC for setup and zero or more for hold.
Thereforey (ALG) > % = k, and the algorithm’s competitive ratio has a lower bouné.of [

3.4.2 DTrack - a2k-Competitive Online Algorithm

We present a simple online algorithm cal&tkack (deficit tracke). It is parameterized by factor
a > 0, which controlswhentransitions happen, and a subroutiteetchoice(), which controls
which server is chosen upon transition. In this section, we focua k-competitive version of
DTrack, calledDTrack—RR, obtained by a round-robinextchoice() policy. Its pseudocode
appears in Figurd.1

We begin with some definitions. Tlaeficit between the serversands’ during the interval
[7,t) is the greatest total difference between the total holdsdost suffix[t’,):

def(s, s, [r,t)) = nax 1(hold(s, [t',t)) —hold(s', [t',1))).

Let us denote the current assignmentsby A servers for which def (s., s, [r,t + 1)) > 0 is
called aleaderat timet.

The algorithm’s code maintains the following variablesis the current timey is the last
transition’s time¢ is the current assignment’s itkaders is the set of the current leaders’ ids, and
Def is the vector of deficit values betweenand the other servers. The algorithm maintains that
attimet, Def[s] = def(s., s, [r,t + 1)).

DTrack maintains an invariant that the deficit betweemnd any other servernever exceeds
aC'. Initially, DTrack makes an assignment to the server with the minimal hold tasien keeps
tracking the deficit versus the other servers. A server besaanieader when it offers a smaller
hold cost thars.., and stops being one when the cumulative deficit value besoregative. Since
the hold costs are published at the beginning of each tintelsteack makes its decision using
a single-slot lookahead. When some server is about to adatensignificantly less hold cost
than the current choice (a deficit of abave’), the algorithm changes its assignment. Due to the
lookahead mechanism, thedate() procedure that updates the deficit values is invoked twice at
transition times. First, for the current choice in order &zide whether to transition, and then for
the new choice, which does not necessarily offer the bestdudt, hence the new deficit must be
computed.

In the instance obTrack we consider now, termebilrack— R R, nextchoice() selects the
next assignmentin a round-robin way, among servers whps®a-deficit versus any other server
(that is, the hold cost gap) does not exce€d

The intuition behindTrack is that the current server must be provably bad (costifignore
than the best) in order to change the choice, and the nexdrsmnst alsamotbe provably bad (not

17

a AwedbpR

N

11

12:
13:
14:
15:
16:

17

18:
19:
20:

21:
22:
23:
24:

25

26:
27:
28:

- Initialization:

t+—0

¢ i s.t.hold(s;,0) = mingeshold(s,0)
reset()

: Every time slot do

update()

if (Def[s] > aC') for somes € Leaders then
nextchoice()
reset()

t—t+1

: procedurereset()

T+ 1

Leaders « ()

forall s # s. do
Def[s] < 0

update()

: procedureupdate()
forall s s.t. s ¢ Leaders A hold(s.,t) > hold(s,t) do
Def[s] < 0
Leaders « Leaders U {s}
forall s € Leaders do
Def[s] « Def[s] + hold(s.,t) — hold(s,t)
if (Def[s] < 0) then
Leaders < Leaders \ {s}

. procedurenextchoice() /*RR version*/
repeat

¢+ (c+1)modk
until hold(s,t) — mingeshold(s,t) < alC

Figure 3.1:.DTrack— RR - an Online Algorithm for Server Assignment.

18

costingaC' more than any other server). When instantiated witk 0 (this algorithm is termed
Greedy), DTrack immediately changes the assignment when some other séfeer @better hold
cost. At the other extreme, when= oo, it never changes its initial assignment. It is clear that th
algorithm is not competitive in either of these extreme sase

In Section3.7.1, we provide a detailed competitive analysisD@tack— R R, and get the fol-
lowing result:

Theorem 3.2. The competitive ratio diTrack— RR is bounded as follows:

r(DTrack—RR) < k(1 + 2) 0<a<l
r(DTrack—RR) <1+ (k—1la+k a>1

Corollary 3.1. For o« = 1, DTrack— RR achieves a competitive ratio ok.

The crux of the algorithm’s competitiveness lies in the mbuwabin selection policy, and can be
informally explained as follows. If we consider a scheduley DTrack— R R thatovertakegthat
is, either leaves or skips) every server while the optimlaédales* does not change its assignment
s*, theno overtakess* exactly once. This overtake implies that the total hold aostirred byo*
during the interval exceeds_'. The total hold cost incurred by exceeds the one incurred by
by at most(k — 1)aC. The subtle point in this proof is the deficit bookkeepingcdnese upon
transition the hold cost lookahead affects the assignmanddes not contribute to the total hold
cost. The total setup cost incurred dyluring this period is at mogtC', whereasr* paysC' upon
the assignment te*. A careful analysis of the worst-case ratio between thd tatsts concludes
the proof.

In order to illustrate this result, consider the adversargtegy from Theoren3.1, assuming
a = 1 and an integral’. In this scenarioQPT paysC for the initial setup, wherea®Track—RR
payskC for setup and:C' for hold (accumulating a deficit @f' before each transition). Hence, the
exact competitive ratio afk is achieved.

3.4.3 CTrack - an Efficient Online Algorithm

At each slotpTrack checks the hold cost of every server, which results in litieae complexity
per slot. Since the number of servers can be large, sublowaplexity is desirable to achieve
efficiency of communication in a distributed implementatio

We now present a simple online algoritltmrack (cost tracke), which achieves constant com-
putation time complexity at the expense of a weaker compeguarantee, under the assumption
of an upper bound on the ratio between the hold and the setip.COrack is also parameterized
by a factora: and a subroutineextchoice(). Initially, it assigns the server with the minimal hold
cost. The assignment changes when the total hold cost $irdadt transition exceeds” (e.g.,
for a = 0, it transitions every time slot). The rationale behind fhoicy is controlling the fraction
of the setup cost in the total cost. It only requires recgjthe hold cost of theurrentassignment
every time slot, which leads to constant per-slot time c@xip).

In Section3.7.2 we provide a detailed competitive analysisC@tack— RR, the round-robin
version ofCTrack, and get the following result:

19

Theorem 3.3.1f hold(s,t) < aC for all s andt, thenr(CTrack—RR) < (2 + a)k for a = 1.

3.4.4 Opportunistic Heuristics

While the competitive ratio is an accepted metric for meiaguthe worst-case performance of an
online algorithm, the average-case performance is moreiitapt in practice. An algorithm that
behavek times worse than the optimal solution in the average casapsactical in systems
accommodating thousands of servers.

In this section, we introduce opportunistic versions @frack and DTrack, in which
nextchoice() selects an assignment that is locally optimal for some wmétrstead of the round-
robin traversal. This approach exploits the well-knowraldg principle to achieve good perfor-
mance in typical scenarios. Note that although localityoisimon in practice, it is not a property
that holds in all possible runs, and hence, the cost of ugapgunistic selection policies is that
they yield worse competitive ratios than the round-robiasn

In theforward heuristicDTrack—F andCTrack—F, nextchoice() picks the server with the
current minimal hold cost. TheackwardheuristicDTrack— B augment®Track— RR’S selection
policy with the following rule: the deficit between the nexkioice and the previous assignment is
greater thapC' for some—oo < 3 < «. Using anys > 0 allows the algorithm to choose the next
server from those that presented good behavior since thiedasition. Fors = —oo, the resulting
algorithm isDTrack— RR. For 3 = 0, DTrack— B chooses the next server from the leader set. For
[= «, it selects a leader that triggered the transition. Thed@ehsan be generalized to describe
DTrack— B’s worst-case behavior (the proof appears in Se@ignd:

Theorem 3.4. The competitive ratio diTrack— B is bounded as follows:

r(DTrack) < k(1+ 1) a<land (<0
r(DTrack) <1+ (k—1)a+k a>land f<a—1
r(DTrack) < 1+ % max(0,a— 1) < g < «

Corollary 3.2. Fora = 1 andg < 0, DTrack— B achieves a competitive ratio ok.

The worst-case competitive ratio achievediyack—F andDTrack—B with o = (is not
limited by the problem sizé (see Sectio.7.4for the proof):

Theorem 3.5. The competitive ratio dfTrack—F andDTrack—B with a = 5 is Q(C).

3.5 Case Study: Mobile Users in a WMN

In this section, we study nomadic service assignment in baruWMN environment. The results
of the optimal algorithmDPT are used as a comparison baseline. For each algodttainwe
measure its cost as well aerformance ratipwhich is the average ratio between the total costs
incurred byALG andOPT during multiple runs. We average over 20 simulations, d&cb00 slots
long. This metric is analogous to the competitive ratio,ttieoretical worst-case metric.

20

| |~ Optimal
-~ CTrack-RRa=1
40r| » DTrack-RRa=1

?1 25 x
2 X
o
= 207 :
~ 15 o
A
10
gl
L L L L hg
0 500 1000 1500 2000 2500

Number of Servers

Figure 3.2: CTrack—RR and DTrack— RR with o = 1 do not scale well with the network size.

The simulated network spans a square grid with uniformlyrithsted wireless routers. The
number of routers that populatd @0m x 1000m grid is 100, that is, a single router spans an av-
erage area af00m x 100m. A mobile node moves using the random waypoint mobility m@é].
The node uniformly chooses the destination and moves toivat@ constant urban driving speed
of 10 m/sec (36 km/hour). The time slot is one second.

We assume that the wireless infrastructure is the maindra&ttk, whereas the gateway re-
sources are abundant, and hence, the end-user QoS is mi¢afy the congestion among mul-
tiple connections. The hold cost between mobile nedend router- is defined asf%, ie., a
normalized Euclideanl(,) distance. Under these parameters, the average hold testdby the
closest router is roughly 0.5. The setup cost is 50.

Our main interest is in the scalability of the online solagoi.e., how the total cost per second
and the performance ratio are affected as the problem simesgior this purpose, we gradually
increase the grid size from®00m x 1000m to 5000m x 5000m, and correspondingly increase the
number of routers from 100 to 2500, keeping the router defised. We study the performance
of different versions o€Track andDTrack with different selections of, 3, andnextchoice().

Our first goal is to study the performancedtrack— RR andDTrack— R R with e = 1, which
have the best proven worst-case ratios. FiguPeshows that both algorithms scale poorly with the
network size (their costs grow approximately\ak, wherea€IPT’s cost remains nearly constant).
This is intuitive, since the round-robin selection poliepntls to assign a session to a random server,
and the average distance grows#s/k).

DTrack— B requires selecting the parameter for a given. Contrary to the worst-case anal-
ysis, our results show that the algorithm’s performancerowgs ass becomes closer ta. Fig-
ure 3.3 depicts the results fa = 1. The curves for aljp values from 0.2 to 1 are barely distin-
guishable. Hence, a good worst case ratio can be guarangesaldeting smallf values without
compromising the average performance by much (for exarfmmey = 1 and = 0.2, the com-
petitive ratio is bounded b¥.5k — 0.25).

Figures3.4(a) and3.4(b) depict the results of simulating the opportunistic aildponsGreedy,
CTrack—F', DTrack—F', andDTrack—B with « = 1 and3 = 1. The performance curves of
CTrack—F andDTrack—F' are almost indistinguishable. The algorithms’ perfornearatios re-

21

501

25 —e—Optimal
-+ DTrack-Bo=1.0 =-1.0
40r| --- DTrack-Ba=1.0 f=0.0
T 35/| * DTrack-Ba=1.0 f=0.2
8 + DTrack-Ba=1.0 =0.5
é 30r| - DTrack-Ba=1.0 B=1.0
2 25 “
o
s 20r
P 15)
10t .
5,
I I I ! hg
0 500 1000 1500 2000 2500

Number of Servers

Figure 3.3: Choosing a/ value for DTrack— B with o = 1.0. The values between 0.2 and 1
exhibit very close behavior and scale well with the network ize.

main constant as the problem scales — around 50% above tineuopt The total cost per second
also remains constant, sin0OeT itself is very scalable.Greedy, which takes the opportunistic
heuristic to the extreme, exhibits a weaker performange ¢atore than three times the optimum)
although it scales well. In this settingreedy’s reasonable behavior can be explained by the mod-
erate speed (hence, the hold cost changes are slow), ane Inyaitherate setup cost (hence, the
penalty for making a wrong decision is limited). The factttbarack— ' consistently produces
better results thabTrack— B can be explained by the motion’s nature. Since the motioaris r
dom, the deficit values exhibit poor locality. The resulticbiave been different had the motion
happened around a small number of stationary points (hoffieg,acab station etc).

Figure 3.4(c) depicts the results of the same experiment with an aeesagulated speed 25
m/sec (90 km/hour). In this settingTrack—F starts producing a consistently lower total cost
(by 5-6%) tharCTrack—F'. This happens because at higher speeds, the hold cost sHastg,
and the total cost becomes a worse transition indicator ttialeficit. This phenomenon cannot
be further magnified at reasonable driving speeds, but carelagly demonstrated in a different
application (Sectio.6). As expectedgreedy performs worse at higher speeds (above five times
the optimum).

Further simulations (Figur8.5 show thata values between 0.5 and 2.0 exhibit nearly the
same average-case performance.

DTrack’s computation overhead can be significantly improved in a M/&hvironment since
the hold cost monotonically increases with distance. Theee maintaining the deficit values re-
quires accessing the hold costs of the servers that are ttotbee user than the current assignment,
as well as the servers that already have a positive deficis.CEm be achieved by using data struc-
tures that support efficient nearest neighbor queries inladimensional space like KD-trees or
R-trees 78]. Figure3.6depicts the percentage of hold costs that need to be acdesBethck— F'
andDTrack—B with o = 3 = 1. We can see that the fraction of hold costs that must be aetess
to maintain the positive deficit values is very low.

22

Total Cost/Second

Performance Ratio

12 5.5 20
——Optimal -=- CTrack-Fa=1 -« CTrack-Fa=1
ol = CTrack-Fo=1 5| - DTrack-Fa=1 -+~ DTrack-Foa=1
-2 DTrack-Fo=1 4.5+ —+ DTrack-Ba=1 p=1 1.8r
-+~ DTrack-Ba=1 =1 2 || - DTrack-Ba=0 =0 (Greedy) 2
8t| * DTrack—-Ba=0 =0 (Greedy) & 4 & -
© o 1.6 ~
o 3.5 * o a *mol
* N B * < = S Rt R R
6 g 4 N . « - g S
5 g14r
© 2.5F 5]
4 . . R S a a
P it ettt Ao 2L P + 1.2¢
2] P -
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 250C 0 500 1000 1500 2000 2500

Number of Servers

(a) Average total cost/second, speed=10 m/s

Number of Servers

(b) Performance ratio, speed=10 m/s

Number of Servers

(c) Performance ratio, speed=25 m/s

Figure 3.4: Scalability of CTrack—F', DTrack—F', and DTrack— B in a WMN with mobile

users,a = 1.0 and g = 1.0.

2.57 2.57 2.57
-« CTrack-Fa=0.5 - CTrack-Fa=1.5 -xCTrack-Foa=2
- DTrack-Fa=0.5 -&- DTrack-Fa=1.5 - DTrack-Foa=2
-+ DTrack-Ba=0.5 3=0.5 -+ DTrack-Ba=1.5 f=1.5 -+ DTrack-Ba=2 3=2
k) k)
2r T 2r T 2r
14 14
e T S + o e m . ——— -+ @ 5P dmm
- (5] - -+ (%)
- 2 + e +
3 I
£ £
- L ~ L o
15r &~ - Tgszzmmgmmmn o —mmmzoozoox El-s’“—ili::::1:—,1:::::3::::::::::1 E1-5’A"'il\”—’—ii’r::—::~:;::::::::::j
1 , 1 , 1 ,
0 500 1000 1500 2000 250(0 500 1000 1500 2000 250(0 500 1000 1500 2000 2500

Number of Servers

(a) Performance ratiay = 0.5

Number of Servers

(b) Performance ratiay = 1.5

Number of Servers

(c) Performance ratiax = 2.0

Figure 3.5: Scalability of CTrack—F', DTrack—F', and DTrack—B in a WMN with mobile
users, speed=10 m/s, with differentv values.

301

25¢

Percentage of Useful Accesses

——DTrack-Fa=1
-~ DTrack-Ba=1 =1

0
0

500 1000

1500
Number of Servers

2000

2500

Figure 3.6: Percentage of useful hold cost accesses per secondlifrack—F' and DTrack— B

with o = 1and g = 1.

23

3.5.1 Motion-Aware Heuristics

In order to achieve a better practical performance, we eyrtplo simple online heuristics tailored
specifically to the mobile user environment. These heggskploit the near-term motion pattern,
and therefore can project the hold costs better BTaiack, which has only a single-slot lookahead.

The first heuristic is calle@argetAware. It requires information regarding the mobile node’s
current target and speed. This target information can beiged from a higher-level system,
e.g., a car navigation system, where the user can indicateutiment status (e.g., “driving home”).
TargetAware is informed every time the mobile node changes its target, appliesOPT as a
subroutine in order to compute the assignment schedulghmmext target is reached. Every time
the target changeSargetAware Selects the best of two choices: runnRY with the fixed first
assignment that is identical to the current one (i.e., nopsetst is incurred for it), or lettinQPT
pick an arbitrary first assignment.

If the target information is not available, a mobile nodeippgad with a positioning system
(e.g., GPS) can use the direction information provided biypithis context, we propose the second
heuristic that is calleBirectionAware. It receives information about the grid size as well as the
mobile node’s estimated current direction and speed, wdnielmeceived upon the node’s direction
changes. The algorithm projects the next target as theictigmoint of its current trajectory and
the grid’s boundary, and appli®argetAware as a subroutine.

Figure 3.7 depicts the scalability of both motion-aware heuristicsthe same environment
as the previous simulation. BoffergetAware andDirectionAware are clearly superior to
CTrack—F andDTrack—F'. Their performance ratios are less than 10% and 18% abowepthe
timum, respectively. As expecte@iargetAware performs slightly better thabirectionAware
because it uses an accurate motion forecast. The motioredwaristics scale even better than
OPT because their lookahead window grows as the grid scales up.

We also evaluateblirectionAware’s capability to handle inaccurate predictions, by supmdyi
it with direction estimates that are normally distributeduand the real direction with varianee
The values of ranged fron)° (exact prediction) t80° (Figure3.7). As expected, the algorithm’s
performance ratio grows with However, this growth is limited by 25% above the optimum.,,|i.
only 7% above the algorithm with a perfect direction forécabherefore,DirectionAware is
quite tolerant to moderately inaccurate direction estanat

Note that both heuristics perform very well despite theinBhookahead window. In the con-
text of the offline assignment problem, this means that atigedly good solution can be achieved
with constant space complexity, without the need to caphgentire data stream before running
the dynamic programming algorithm.

3.6 Case Study: Wide-area Chatroom Service

The second environment studied is an Internet-scale grargoapplication service7B, 74], e.g.,
chat. The service overlay network consists of 100 serveiferanly selected among the nodes
of a random network. Groups of users run a chatroom appmicatvhere each group is assigned
to a single server. The users are stationary, and theiritosatire uniformly distributed in the

24

— Optimal —-4- TargetAware
—A- TargetAware

DirectionAware(e= 0°) 1.25-
+ DirectionAware(e=10°)
+ DirectionAware(e=20°)
DirectionAware(e=30°)

w
Y

* DirectionAware(e= 0°)
+ DirectionAware(e=10°)
* DirectionAware(e=20°)
v DirectionAware(e=30°)

w
IS

w
N

w

Total Cost/Second
©

N]
N S o
Total Cost/Second
N
N
o
<

N

ffffffffffffffff

=
©

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Number of Servers Number of Servers

(a) Average total cost/second, speed=10 m/s (b) Performance ratio, speed=10 m/s

Figure 3.7:Scalability of the motion-aware algorithms in a WMN with mobile users.

network. The user arrival to a group is described by a Poipsocess with a mean of, and the
membership lifetime is distributed exponentially with aanefT (that is, the average number of
users in a group ia7). The hold cost between grodpand serves is proportional to the maximal
network distance between the server and some node in thp,gubich reflects the application’s
buffer space requirements affected by the maximal delathitncontext, the server is seen as the
group’scentetr and the maximal distance is the groupgslius We study the same instances of
CTrack—F, DTrack—F', andDTrack—B as in SectiorB.5 (that is,a« = ¢ = 1). We explore the
algorithms’ scalability with both the number of servers &émel average group size.

In the first experiment, we increase the number of servengajiallel with the network’s size)
from 100 to 2500, without increasing the number of users. ¥e\s= 0.1 users/second and
T = 30 seconds, yielding three users in the chatroom on averagerd3d.8a) depicts the sim-
ulation results. Both versions offrack are within 15-20% above the optimal co®Track—F
consistently outperform@Track— F' because individual join or leave events in a small group trig
ger fast changes in the hold costs. This is the same phenanteabhappens in WMNs at high
speeds (Figur8.4(c)), but it is more significant since the hold cost changedaster.

In the second experiment, depicted in FigBrg(b), we scale the average group size up from
three to 75 (a large-scale conference) by increasing batid7'. The network size is not changed.
Both versions obTrack exhibit a performance ratio of under 5% above the optimungfoups
with more than ten members, and converge to the optimal sa$teagroup scales. This happens
because in dense groups, individual join and leave eventsotdconsiderably affect the group
radius. Therefore, the algorithms perform fewer transgio

Finally, we study the algorithms’ scalability to large gpsun large networks. For this purpose,
we gradually increase both the number of servers and the@ina by the same factor. The results
depicted in Figure3.8(c) show that when the number of servers grows from 400 to 2B@0the
number of users grows from 12 to 75, the performance ratidmtf versions obTrack remain
constant at less than 5% above the optimum, whereas therpearioe ratio oCTrack—F also
remains constant but exceeds the optimum by 30%.

25

Performance Ratio

N
N
N

- CTrack-Fa=1 -« CTrack-Fa=1 - CTrack-Fa=1
——DTrack-Fa=1 ——DTrack-Fa=1 —+—DTrack-Fa=1
[|——DTrack-Ba=1p=1 [|——DTrack-Ba=1p=1 [l ——DTrack-Ba=1 =1

=
®
=
®
Ly
©

g
2}
g
o

A
*
=
N
I 1
Il
‘
!

g
2}

I
=
I
=
I
B

x

Performance Ratio
Performance Ratio

e

b—mp—— Tomm ey
— —— —

12 S 1.2r
D
1 L L L L , 1 L n . . — + = 4+
0 500 1000 1500 2000 2500 0 20 40 60 13/100 12/400 27/900 48/1600 75/2500
Number of Servers GroupSize Group Size/Number of Servers
(a) Scalability with number of servers (b) Scalability with group size (c) Scalability with number of servers/group size

Figure 3.8: Scalability of CTrack—F', DTrack—F' and DTrack— B in a wide-area chatroom
application service,a = 1.0 and 5 = 1.0.

3.7 Analysis

3.7.1 A Competitive Analysis of DTrack-RR

In this section, we give a competitive analysis of the waeste performance offrack— R R, and
derive the parameter value @ffor which the best competitive ratio is obtained.

Claim 3.1. Lett be a time ands a server. Letr be the time of the latest transition befare- 1.
DTrack—RR maintains thaDef [s] = def (s, s, [r,t + 1)).

Proof. Immediate from the code (Lines 14-15 stands for the inz#zion upon assignment, and
Lines 18-24 stand for the maintenance between assignments) O

Lemma 3.1. Lett be a time and a server. Letr be the time of the latest transition befdre- 1.
Thendef(o(7),s, [r,t+1)) < aC.

Proof. By induction ont. Fort = 0, the claim holds because the server with the minimal hold cos
is selected (Line 3). Far> 0, if there is no transition at, then the invariant is maintained by the
algorithm’s code (Line 7). Assume that a transition occutsae ¢, i.e.,7 = ¢. By the induction
hypothesisdef (o (7'), s, [7',t)) < aC, wherer’ is the previous transition time. However, since a
transition happened atthen for some, def (o (7'), s, [7/,t+1)) > aC. Hence, there exists some
servers such thatold(s,t) < hold(o(7'),t), thatis,hold(c(7'),) is not the minimal hold cost
at timet. Therefore, some identity # o(7’) can be found such thaef (s, s, [t,t + 1)) < aC,

for all s’ (Line 28) — e.g., the server with the minimal hold cost aatisfies this requirement.]

Corollary 3.3. If nextchoice() is invoked at time, it returns an identifier that is different from
o(t—1).

We term an intervalr, 7') between two consecutive transitions of algorithb& or between
ALG's last transition and the end of the run As:-round WhereALG is clear from the context,
we simply say round. It is convenient to describe the assegrirohoices made yTrack—RR

26

OPT-round
(. W El” Assignment by DTrack-RR
[2)[a)[Pea % :31 Assignment by OPT
)
I I I A l

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time
A

L A
S S

Figure 3.9:Definition of phases forDTrack— RR.

with time as a movement in a circular server identifier spadth, a clockwise direction froms to
(s + 1) mod k. We say that overtakess at timet if s is encountered while moving clockwise
fromo(t — 1) too(t), ands # o(t). In other words, either(t — 1) is s, or s is skipped at.

We now consider @Track— RR-round and arALG-round of an arbitrary algorithmLG. We
analyze the competitive ratio offrack— R R for different values olv by comparing the cost it
incurs with the cost incurred LG during a single\LG-round|r;, 7;..1) and then generalizing for
the whole run. We denot&l.G’s schedule by’, andALG’s assignment during thi&LG-round bys’

(if ALG is OPT, the notations are* ands*, respectively).

We define two partitions of the intervai;, 7,1) into sub-intervals. The first one partitions the
interval tophases{P; ; = [t ;,t;;+1)}, defined as follows. The first phase starts;atA phase
completes at the earlier between the time wheovertakess’ and; ;. The second patrtition is
to shifted phase$7?j}, defined as follows. The first shifted phase starts; atA shifted phase
completes at the earlier between one slot after the coroplefithe corresponding phase and, .

Figure3.9depicts the above definitions for @aT-round[10, 30), in which s* = s,. The first
phase ends at time 18 when the algorithm chosgseand overtakes,, which was its previous
assignment. The second phase ends at time 25 when the lalgatiboses; and overtakes, for
the second time, without choosingin this phase.

Lemma 3.2. Consider amALG-round|r;, 7;,1) with p phases produced Brack—RR. Then,
cost(c, [Ti, ix1)) < hold(d’, [, Tiy1)) + pC(k + (K — 1))

Proof : Consider @Track—RR-round(t,t') C P, ;, and denote = o(t).

If s = ¢/, thenhold(c’, [t,t')) = hold(o, [t,t")). Otherwise, by the definition @fef, hold(o, [t,t"))—
hold(c’, [t,t')) < def(s, s, [t,t')). By Lemma3.1,def(s, s, [t,1')) < aC. Thereforehold(o, [t,1'))—
hold(o’, [t,t')) < aC'. There are at most — 1 rounds duringP; ; in which the assignment is dif-
ferent froms’, and hence,

hold(o, P; ;) —hold(c',P;;) < (k — 1)aC.

27

DTrack—RR performs at most transitions during?; ;, paying at mostC' for setup. Therefore,
cost(a, P;;) < hold(c',Pi;) + (k — 1)aC + kC.

{P;;} is a partition of;, 7,41), and hence,

p

cost(a, [Ti77—i+1>) = Z cost(a, Pi,j) <

J=1

ihold(a', Pij) +pC(k+ (k—1)a) =hold(c’, [, Ti+1)) + pC(k + (k — 1)ar).00

j=1

Lemma 3.3. Consider amALG-round [7;, 7;+1) With p phases produced y'rack—RR, such that
eithero(r; — 1) # o'(7;), or o(m;) # o'(r;). Thenhold(o’, [7i, Tiv1)) > (p — 1)aC.

Proof : If p = 1, the claim trivially holds because the hold costs are nayatiee.
Otherwise, consider a phaBe; such thay < p. This phase ends 8t;.,, that is strictly smaller

thant;,;. We first prove a claim thatold(o—’,ﬁj) > «aC. ConsideDTrack—RR’s assignment
s during the lasDTrack—RR-round[t, ; ;1) in P, ;, thatis,s = o(t), ando overtakess’ at time

tij+1. By definition,ﬁ; ends attime; ;. + 1. Consider two possible cases:

1. If s # s, then the algorithm considers pickiagupon the transition from att; ;.;, and does
not select it because there exists a sehva@rch thahold(s’, ; j11) —hold(s,t; j11) > aC,

and hencehold(s',t; ;+1) > aC'. By definition of a shifted phasé, ; .1, ;.1 +1) C ﬁ
—
It follows thathold(o’, P; ;) > aC, and the claim holds.

2. Otherwises = s'. Since the algorithm transitions froghat timet; ;,, there exists such
thatdef (s, s, [¢t,t; j+1+1)) > aC, thatishold(c’, [t,t;;+1+1)) > aC. Assume thaP; ; is
the first phase ifir;, 7,11). Since eithet (7; — 1) # o'(7;), oro(7;) # o'(7;), DTrack—RR’S
assignment ta’ did not happen before, i.e.,t > 7,. Hence,[t,t; ;1 + 1) C 7?; by
definition of a shifted phase. Otherwise, consider the pliagephaseP; ;_,. By definition,

o overtakess’ at timet, ;. In particular,c(; ;) # s'. Since at least one time slot is spent at
every assignmeng;, transitions tos’ at timet; ; < t < t; ;41, thatis,[t, ¢, j11 + 1) C 7?; It
follows thathold(co”, 7?;) > o', and the claim holds.

It follows thathold(c’, P.,) > aC. {P,} is a partition of(;, 7i,,), and therefore,

—_

.
hold(d’, [, Tiy1)) > hold(a/,ﬁ) > (p—1)aC.O
1

<.
Il

Lemma 3.4. Consider anALG-round [7;, 7;41), such that eithew (7, — 1) # o'(7;), or o(7;) #

28

o'(7;). Then,
cost(0,[7i,Tiv1) k(1 + é) a<l

cost(o/,[Ti,Ti+1))

costlolnmii)) <14 (k—1a+k a>1

cost (0! [i,7i11))

Proof : ALG pays the setup cost for a single transition during;, 7;.1) (at7;), and therefore,
cost(o’, [1;,Tit1)) = C +hold(d', 1, Tix1))-

Substituting the ratio’s numerator from Lem®&, we receive

hold(c’, [1;, Ti41)) + pC((k — 1)+ k) pC((k—1Da+ k)

cost(o, [1i, Tit1))

< 1 .
cost(0”, 7, Tis1)) — C' + hold(o, [T, Ti+1)) G + hold(o”, [T, Ti+1))
Substituting the denominator from Lemr83,
cost(a, [T, Tit1)) <14 pC(k+(k—1)a) L+ p((k—1a+ k)
cost(o’, 1, Tit1)) C+(p—1)aC I1+(p—1a

We denotep(a, p) = 1+ % In order to compute that produces the maximum ratio for a

givena, we deriveg—i. We get tha%f = 0 for a = 1, that is, the function is constant when= 1:
o(1,p) = 2k for all p. The derivative is strictly positive far < 1 and strictly negative forx > 1,
therefore, the function is monotonically increasing for< 1 and monotonically decreasing for
a>1. Fora <1,

) k—1Da+k 1
wp oo p) = lim plap) = 1+ FDath g 1y
1<p<oo p—00 « «
whereas fory > 1,
sup o(,p) = o(a, 1) =1+ (k= 1a+ k.0

1<p<oo

Theorem 3.2. The competitive ratio dfTrack— RR is bounded as follows:

r(DTrack—RR) < k(1 + 1) a<l
r(DTrack—RR) <1+ (k—1la+k a>1

Proof. We prove the upper bound @Track— RR’S competitive ratio for evergPT-round, and
conclude the same result for the entire run.

Consider the local ratio between the costs incurredTyack— RR and0PT during a single
OPT-round|r;, 7;41), that |s% If eithero(r; — 1) # o(r;), oro(r; — 1) # o(m;), the
claim follows immediately from Lemm&.4. Otherwiseo(r; — 1) = o(r;) = o*(1;) = s*. |If
DTrack— R R never transitions during th@T-round, then

cost(a, [7, Tit1)) = hold(o, [1;, Ti+1)) = hold(c™, [1;, Tit1)) < cost(d™, [7, Tit1)),

and the claim trivially holds. Otherwise, let < ¢t < 7., be the first time after; such that

29

o(t) # s*. Consider a schedul€ that is obtained frona™ by shifting the assignment tg from

7; tot (assume that this schedule is produced by some algo#itiehn Note thatold(c*, [1;, 1)) =
hold(c, [1;,t)) > 0,andcost(o, [t, 7;+1)) = cost(o, [7, Ti+1))—hold(o, [1;, 1)) > cost (o™, 1, Tit1))—
hold(c,[ri,t)) = cost(o’,[t,7;11)) > 0. By applying a well-known inequality™> < ¢ for

0 < b < aandx > 0 to the sought ratio, we get:

cost(o,[7;, Tix1)) hold(o,[7;,t)) + cost(o, [t, Ti41)) _ cost(o, [t, Tiy1))
cost(o*, [15,Tix1)) hold(o,[r,t)) + cost(o’,[t, Tiz1)) ~ cost(o’,[t, Tiz1))’

. Sinces* = o(t — 1) = o/(t) # o(t), the bound from Lemma.4is applicable to th&LG-round
[t,7;41), and the claim follows. O

3.7.2 A Competitive Analysis of CTrack-RR
Theorem 3.3.1f hold(s,t) < aC for all s andt, thenr(CTrack—RR) < (2 + a)k for a = 1.

Proof. Consider ardPT-round [7;, 7;,.1) With p phases produced byTrack—RR as defined in
Section3.7.], in which s* is OPT’s choice.

Consider &Track—RR round[t, ') in which servers is CTrack— RR’s choice. Ift < t' — 1,
then

hold(o, [t,t")) = hold(o, [t,t' — 1)) + hold(s,t’ — 1) < hold(o, [t,¢' — 1)) + aC.

hold(o, [t,t' — 1)) < aC since no transition happenedtt- 1, and hencehold(o, [t,t')) <
(a+a)C. If t =t — 1, the same result holds trivially. There ar@hases itjr;, 7,.1) and at most
k rounds in each phase. Summarizing oveca@tack— RR’s rounds, we get

cost(o, [7i, Tit1)) < pkC + hold(o, [1i, Tit1)) < pk(a+ a)C + pkC = pk(a +a + 1)C.

Consider the lastTrack—RR round|[t, t') in phaseP; ; such thatj < p. By definition,s* is the
algorithm’s choice in this round. A transition happensyéfere, hold(o, [t,t')) > «C. Hence,
hold(c*, [t,t")) > aC'. Summarizing over all phases|in, 7;.), we get

cost(c™, [1i,Tix1)) = C' +hold(c™, [, Ti41)) > (1 4+ (p — 1)) C.

Hence,
cost(a, 1, Tit1)) kp(oz +a+1)

cost(o*, [7i, Tit1)) 1+ (p—1)a’
Fora = 1, this ratio is smaller thaf2 +a)k for all p. Since this upper bound limits the algorithm’s
competitive ratio for evergPT-round, we conclude the same result for the entire run. O

30

3.7.3 A Competitive Analysis of DTrack-B

In this section, we prove the upper bound on the competititie 0f DTrack— B for arbitrary
values. The following lemma is an adaptation of Lenr@for DTrack—B.

Lemma 3.5. Consider anALG-round [7;, 7;.-1) With p phases produced yTrack—B, such that
eithero(r; — 1) # o'(7;), or o(m;) # o'(;). Then,

hold(d', [, Tix1)) = (p — 1)C min(a, o — 3).

Proof. Like in Lemma3.3, we consider a phasg, ; such thatj < p, which ends at, ;.. We
first prove a claim thatold(o’, 7?;) > max(«o, — §)C. ConsideDTrack—B’s assignment
during the lasDTrack—B-round[t,t; j+1) in P; ;, thatis,s = o(t), ando overtakess’ at time
ti j+1. Consider the case whern# s'. This happens for one of two reasons:
1. There exists a serversuch thathold(s’,¢; ;+1) — hold(3,¢;,41) > aC, and therefore,
hold(s',t; 1) > aC. [t;ji1,tij41+ 1) C 7?3 hencehold(o’, 7?3) > aC, and the claim
follows.

2. def(s, s, [t,t;;+1 + 1)) < BC. There exists a serverthat triggered the transition, and
thereforedef(s, 3, [t,t; j41 + 1)) > aC. Hencedef (s, 5, [t,t; ;41 + 1)) > (o — B)C, that
—>
is,hold(c’, P; ;) > (ov — 3)C', and the claim follows.

The rest of the proof is identical to that of Lemi3a. 0J
Theorem 3.4. The competitive ratio diTrack— B is bounded as follows:

r(DTrack) <1+ (k—1l)a+k a>landf<a—-1 (1)
r(DTrack) < k(1+ 1) a<land (<0 (2)
r(DTrack) < 1+ % max(0,a—1) < g <a (3)

Proof : Consider the local ratio between the costs incurredyack—RR andOPT during a
single0PT-round[r;, 7;+1). Similarly to the proof of TheorerB.2, we derive

cost(a, [Ti, Tit1)) p((k—1)a+ k)
cost(o*, [Ti, Tix1)) <1+ 1+ (p—1)min(a,a — 3)

We denotes(a, 3,p) £ 1 + 1+(§£(f)‘rii)f(z2_ﬁ). If min(a, v — 8) > 1 (i.e.,a > 1anda — § > 1),

then the derivativ%’ is non-negative, and hence,

sup o(a, B,p) =o0(a, B,1) =14+ (k—1a+k fa>landf<a-—1. (3.1)

1<p<oo
If min(a,a —) <1, theng—f) is non-positive, and hence,

(k—1Da+k

sup (o, B,p) = lim oo, 6,p) =1+ min(a,a—3)°

1<p<oo

31

Consider the case whenin(a, o — 3) = «, i.e., 5 < 0. Combining this withn < 1, we get:

— 1
sup g(a,ﬂ,p)zl—i—w:k(le—) ifa<landp<O0. (3.2)

1<p<oo (0] (6]

Consider the case whenin(a, o« — 5) = a — 3, i.e.,# > 0. Combining this withw — 3 < 1 and
0 < «a (by definition), we get:

(k—1a+k

sup o(a,B,p) =1+ if max(0,a—1) <fg<a, (3.3)
1<p<oo a—3
and the claim follows. O

3.7.4 Non-Competitiveness of Opportunistic Algorithms

In this section, we show that the opportunistic versionBTafack are not competitive, that is, the
worst-case competitive ratio depends@yrather than on the problem size

Theorem 3.5. The competitive ratio dfTrack—F andDTrack—B with a = 5 is Q(C).

Proof. Assume wlog that” is a positive integer (otherwise, the theorem can be provedf =
|C'|). Lete be a small number s.t0 < ¢ < o2+ Consider three servers, s; ands,. Let
hold(sy,t) = ¢ for all ¢, whereashold(sg,t) andhold(sy,t) are defined as follows for integer

values ofd <i < [$]:

(2i+3)e t=(2i+1)(C+1)
hold(sg,t) =< « 20(C+ 1) <t< (2i+1)(C+1)
0 otherwise
and
(20 4+2)e t=2i(C+1)
hold(sy,t) =< « 2i4+1D)(C+1)<t< (20 +2)(C+1)
0 otherwise

The hold costs during the intervill 3C'+3] are depicted in Figurg.1Q Note that fol0 < i < (%1,
it holds that(2i + 3)e < (C + 2)e < «. Thereforehold(sg,t) < «, andhold(s;,t) < o forall ¢
during this interval.

Lemma 3.6. BothDTrack— F' andDTrack— B assigns, at timest = 2i(C' + 1), ands; at times
t=(2i+1)(C+1),for0<i<[S].

Proof. By induction on:. At timet¢ = 0, both algorithms choose because it offers the minimal
hold cost. The induction step considers two cases:

32

Hold cost

Hold(sg,t)

== = Hold(sy,t1)

|
|
| — - — Hold(s,,Y)
|
|

[]
LS

01 C+1C+2 2C+1 2C+2 3C+2 3C+3 Time

o e om— — —

0 € 2¢ 3¢ 4¢ 5¢

Figure 3.10:An example of hold costs for whichDTrack—F' and DTrack— B with a = (are
Q(C)-competitive.

1. t = (2i+1)(C+1). Both algorithms transitioned tg at2:(C'+ 1) by induction hypothesis.
We computelef (s, s1, [2i(C + 1),t)) anddef (s, s, [2i(C + 1),1)).

def(sp,s1,[2i(C' +1),(2i +1)(C+1)+1)) =
—(2i+2)e+aC+((2i4+1)+2)e =aC +¢e > aC,

whereas

def(sq, 52, [21(C +1),(2i +1)(C +1) + 1)) =
—e+Cla—e)+(2i+1)+2—1e<alC —e(C—(2i+1)) < aC.

Note that bothief (s, s1, [2i(C + 1),t') anddef (so, s2, [2i(C + 1),t") are strictly smaller
thanaC for t' < t. Therefore, the transition happens(at + 1)(C + 1) for the first time
since2i(C' + 1).

2. t=(2i+2)(C +1). This case is proved analogously to the previous one.

Upon every transitiomTrack— I’ selects the server with the zero hold cost, kgat times2i(C' +
1), ands; at timest = (2: + 1)(C + 1). DTrack— B selects the server that achieves the largest
deficit, i.e., it makes the same choice. O

Consider a run obTrack—F andDTrack— B during the interval0, C? — 1). Both algorithms
behave identically. They transiti@gntimes during this interval (at= i(C'+1),for0 <i < C—1).
Hence, the total setup costd®. The total hold cost exceed>? since a hold cost of above’ is
incurred between every two transitions. Hence, the tosstidoring the interval exceeds +1)C?.

In the same settin@PT selectss, att = 0 and never changes its assignment, thus paying a total
setup cost of” and a total hold cost of(C? — 1) < aC. Hence, the competitive ratio of both
online algorithms ig2(C). O

33

Chapter 4

The Load-Distance Balancing Problem

The increasing demand for real-time access to networketicssris driving service providers to
deploy multiple geographically dispersed service poiatsservers. This trend can be observed
in various systems, such as content delivery networks (GD8 and massively multiplayer
online gaming (MMOG) grids42]. Another example can be found in wireless mesh networks
(WMNSs) [16]. A WMN is a large collection of wireless routers, jointlyguiding Internet access
in residential areas with limited wireline infrastructuwi@ a handful of wired gateways. WMNs
are envisaged to provide citywide “last-mile” access fomewous mobile devices running media-
rich applications with stringent quality of service (Qo8juirements, e.g., VolP, VoD, and online
gaming. Gateway functionality is anticipated to expandl, tardeploy application server logit)].

Employing distributed servers instead of centralized esefarms enables location-dependent
QoS optimizations, which enhance the users’ soft real-erperience. Service responsiveness is
one of the most important QoS parameters. For example, ifirttgoerson shooter (FPS) online
game §42], the system must provide an end-to-end delay guaranteeloivbl00ms. In VoIP,
the typical one-way delay required to sustain a normal caat®n quality is below 120m$§.
Such guarantees are nontrivial to implement in mesh nesyaltke to multiple hops and a limited
number of gateways.

Deploying multiple servers gives rise to the problenserivice assignmentamely associating
each user session with a server or gateway. For example,Gakhuser gets its content from
some proxy server, a player in a MMOG is connected to one ganvers and the Internet traffic
of a WMN user is typically routed via a single gatewayf]. In this context, we identify the
need to model the service delay of a session as a sumetiaork delayincurred by the network
connecting the user to its server, andangestion delaycaused by queueing and processing at
the assigned server. Due to the twofold nature of the ovdeddly, simple heuristics that either
greedily map every session to the closest server, or spneddad evenly regardless of geography
do not work well in many cases. In this work, we present a napproach to service assignment,
which is based on both metrics. We call the new problem, whestks to minimize the service
delay among all usertgad-distance balancingpr LDB.

In this chapter, we address theB problem in a centralized setting. The problem, which is
precisely defined in Sectidn 2, seeks to minimize the service delay among all users, antiitas
flavors: (1)maximumdelay minimization and (2averagedelay minimization. We demonstrate

34

that the min-max.DB problem is both NP-hard and non-approximable within théoiaaf two for
general distance and load functions (Secddh), and present the best possible 2-approximation
algorithm (Sectiort.3.2. For a special case when the users and the servers aredacateline
segment, and the network delays are Euclidean distancedgnvenstrate a polynomial dynamic-
programming algorithm for this problem (Sectidt3.3. Following this, we present a polyno-
mial algorithm for the min-averageDB, which applies for convex load functions, and finally,
a dynamic-programming solution for the linear setting whias an improved time complexity
(Section4.4.2.

4.1 Related Work

Load-distance balancing is an extension of the load balgnproblem, which has been com-
prehensively addressed in the context of tightly couplestesys like multiprocessors, compute
clusters etc. (e.g.2p]). However, in large-scale networks, simple load balagéminsufficient
because servers are not co-located. While some prior wvi&I6[3] indicated the importance of
considering both distance and load in wide-area settingsa& not aware of any study that pro-
vides a cost model that combines these two metrics and camabgzad.

While a centralized approach is feasible for small-scalérenments, it cannot scale to large
networks, e.g., city-wide WMNs. We therefore seeklfmral distributedsolutions, which spread
as few information as possible for achieving tesiredapproximation of the optimal solution.
Chaptels explores this approach for the min-mid8 problem, and demonstrates how centralized
optimization algorithms can serve as local building bloftksscalable distributed solutions.

4.2 Problem Definition

Consider a set of serversS and a set oz user session&. The network delayfunction, D
(U x S) — RT, captures the network distance between a user and a sefverusers and the
servers do not necessarily reside in a metric space [i.& hot necessarily subject to the triangle
inequality).

Consider an assignmeit: U — S that maps every user to a single server. Each serlias
a monotonic non-decreasiegngestion delafunction,d, : N — R*, reflecting the delay it incurs
to every assigned session. For simplicity, all users inceirseme load. Different servers can have
different congestion delay functions. The service deldy, \) of session: in assignmen is the
sum of the two delays:

Au, A) £ D(u, Mu)) + 0x ({v = A(v) = Mu)}).

Note that our model does not include congestion within thevoek. Typically, application-
induced congestion bottlenecks tend to occur at the seordfge last-hop network links, which
can be also attributed to their adjacent servers. For exgmpl CDN B3], the assignment of
users to content servers has a more significant impact onaldeon these servers and their access
links than on the congestion within the public Internet. IIMWs, the effect of load on wireless

35

links is reduced by flow aggregatiob§], which is applied for increasing the wireless capacity
attainable for real-time traffic. The last-hop infrasturet, i.e., the gateways’ wireless and wired
links, is mostly affected by network congestidt®].
The min-max.DB problem is defined as follows. The cost of an assignmeasatthemaximum
delay it incurs on a user:
AMN)) £ max Au, N).
The optimization goal is to find an assignmantsuch thatA™ (A*(U)) is minimized.
The min-averag@DB problem is defined as follows. The cost of an assignmeistthetotal
delay incurred by it:
ATNU)) £ Adu, N).
uelU
In this context, the optimization goal goal is to find an assignt* such thatA”(*(U)) is
minimized.

4.3 Min-Max Load-Distance Balancing

This chapter studies the min-maxB problem. We first analyze its computational complexity
(Section4.3.]), and present the best possible approximation algorithngdéaeral cost functions
(Section4.3.2. Following this, we present an efficient polynomial alglom for a special case in
which network distances are captured by a linear Euclidegtnien(Sectiord.3.3.

4.3.1 Computational Hardness

We first prove that the min-max0B optimization problem is NP-hard. This result stems from the
hardness of the decision variationi®fB, denoted.DB—D. In this context, the problem is to decide
whether delay* is feasible, i.e., whether there exists an assignmench than\M (\(U)) < A*.

In what follows, we prove the show a reduction from #hect set cove(XSQ problem p].
An instance oiXSCis a collectionS of subsets over a finite sét. The solution is a set cover for
U, i.e., asubses” C S such that every element i belongs to at least one member$f The
decision problem is whether there is a cover such that eachezit belongs to precisely one set in
the coverXSCis NP-hard even if all subsets fhave the same size.

Theorem 4.1. TheLDB—D problem is NP-hard.

Proof. Consider an instance &fSCin which |U| = n, |S| = k, and each set contains exactly
elements, such thdt < k. The problem is therefore whether there is a cover contgifiisets.
The transformation of this instance to an instanc&i#—D is as follows. In addition to the
elements inJ, we define a set’’ of M (k —) dummy elements, wher&/ > m. We construct a
bipartite graph (Figurd.1), in which the one side contains the element&ip) U’ (the users), and
the other side contains the setsSr{the servers). The dummy users are at distahdeom each
server. The real users are at distaidge- d, from each server that covers them, and at distance

36

Dummy users Servers Real users

« d > d >

Figure 4.1:Reduction from exact set cover to LDB-D.

from all the other servers. The capacity of each server ftadcel; is M, and for distancd, is
k,i.e,o; (A* —dy) = M, andd; L (A* — dy) = m.

A feasible XSCsolution induces a feasibleDB assignment: each real user is assigned to a
server representing the unique set that covers the comdsmpelement, and the dummy users are
evenly spread among the remainihg- - servers. We argue that no other feasible assignment
exists. Consider a server utilized by a feasibldt can accommodate eithér dummy users, or
any combination of) < m’ < m original users and» — m’ dummy users (any other assignment
incurs a delay abovA* to some user). Assume that both real and dummy users armedsmat
least one server. Then, the total number of servers thatrealesers assigned to themkis> .

All these servers have capacity, and hence, they serve at moest’ — n dummy users. The
remaining servers can haosf(k — k) dummy users. Hence, the total number of assigned dummy
users is bounded by/ (k — &) + mk' —n = M(k —2) = M(K' — 2)+m(K — %) < M(k—2),

that is, the assignment is not feasible. Hence, exattlervers must be allocated to real users,
thus solving theXSCinstance. O

A slight modification of the above proof demonstrates thanea2 — = approximation of.DB
is NP-hard, for an arbitrarily smadl In this context, the-approximate.DB—D is to decide, given
the delayA*, whether there exists an assignmemstuch thatA™ (\(U)) < cA*, for somec > 1.

Theorem 4.2. The (2 — ¢)-approximateL.DB—D is NP-hard, for alle > 0.

Proof. We construct a bipartite user-server graph, identicalltheoproof of Theoren#.1 The

37

Figure 4.2: The bipartite graph for a single phase ofBFlow.

congestion delay function is uniform among all servers:

S(i)=4 A*—dy f m<i<M

00 otherwise

It is easy to verify that a feasibSCsolution induces a feasibie®B assignment.

Suppose we let; = ¢ andd, = A* — . If an element is not a member of a set, the distance
to that server is infinite. If there is no solution for exacten i.e., any collection of- sets leaves
some element uncovered, the corresponding real user weéltaebe assigned to a server that is also
hosting// —1 dummy users. The delay experienced by this user isth$A* —d;) = 2(A*—¢).
Therefore, th&SC problem reduces to @ — ¢)-approximate.DB—D. O

Note, however, that the distance function considered irptbef does not satisfy the triangle
inequality. Indeed, since each dummy user is connected sewrlers, the distance between any
pair of servers does not exce®d,. Hence, it is impossible for the distance between any real us
and some server to exceed, + d,, and in particular, it cannot be infinite - a contradiction.

Claim 4.1. There exists a distance function subject to the trianglejuadity, for which ag-
approximateL.DB—D is NP-hard.

Proof. We consider the same graph as the proof of Theatdnand choosé; = % andd, = A*.
The distance of a real user to a server is eithéror 2d, + dy, = gA*. If there is no solution to
exact cover, then the best solution can have delay no Iowergth*. O

4.3.2 BFlow — a 2-Approximation Algorithm

In this section, we present a simple algorithm, cab&dow, which computes a 2-approximate
solution for min-maxL.DB. By Theorem4.3.], this is also the best possible approximation for
general distance functions.

BFlow works in phases. In each phase, the algorithm guesses AM (*(U)), and checks
the feasibility of a specific assignment, in which neithex tletwork nor the congestion delay
exceeds*, and hence, its cost is bounded *. BFlow performs a binary search on the value
of A*. A single phase works as follows:

38

1. Each user: marks all servers that are at distanc®(u,s) < A*. These are its feasible
servers.

2. Each serves announces how many users it can serve by computing the ewaéis(A*).

3. We have a generalized matching problem where an edge rtiedtresserver is feasible for
the user. The degree of each user in the matching is exaatlyamu the degree of server
is at most;*(A*). A feasible solution, if one exists, can be solved via a maw-fhin-cut
algorithm in a bipartite user-server graph with auxiliaoysce and sink vertices. Figude2
depicts an example of such a graph.

Theorem 4.3.BFlow computes a 2-approximation of an optimal assignment formmaxxLDB.

Proof. Consider an optimal assignmexitwith costA*. It holds thatA; = max, D(u, *(u)) <
A*, andA, = max, 65(L(s)) < A*. A phase oBFlow that tests an estimat® = max(A;, Ay)
is guaranteed to find a feasible solution with cAst< A, + Ay, < 2A*, O

Since there are at most: distinct D values, the number of the binary search phases that
attributes to covering all of them is logarithmic in The number of phases that attributes to
covering all the possible capacities of servés O(log d5(n)), which is at linear im or below for
any reasonablé,. Hence BFlow is a polynomial algorithm.

4.3.3 Optimal Assignment on a Line with Euclidean Distances

In this section, we consider the case when the users andersare located on a line segment
[0, L], and the network delays are Euclidean distances. We showthanaxLDB is polynomially
solvable in this model through dynamic programming.

We start with some definitions. For simplicity of presergatiwe assume that every user or
server; has a distinct locatiom;. The distance between useand servek is thereforeD (u, s) =
|zs — z,|. Assignment\ is calledorder-preservingf for every pair of users:;; andu, such that
Ty, < Ty, itholds thatry,,) < xyw,). Otherwise, both\ and every paifu,, u,) for which this
condition does not hold are calledder-violating

Every order-preserving assignment partitions the line &ngeries of non-overlapping segments
such that every user within segmeéis$ assigned to server. Segment is located to the left from
segmeny iff i < j. Note thats; does not necessarily located inside segment

Theorem 4.4. The min-max.DB problem on a line has an order-preserving optimal assigrimen

Proof. Consider an order-violating assignment We show how it can be transformed into an
order-preserving assignment that incurs smaller or ecqpsdl ¢

Since is order-violating, there exists a pair of usersandu, assigned to servers ands;
such thatr,, < z,, butz,, > z,,. We transform\ to a new assignment’ from by switching
the assignments af;, andus,, i.e., N (u;) = s; and X (ug) = s,. Since this switch does not affect
the load ons; ands,, no change is incurred to any user’s processing delay. Tdreteonly the
network delays incurred t@, andu, are affected. We therefore need to show tatoes not incur
greater maximum network delay values tharhat is,

39

—————— > After switch

(a) J ———» Before switch
N

Figure 4.3: Switching the assignment of an order-violating pair(uy, us).

Claim 4.2. It holds thatmax(D(u1, s1), D(ug, s2)) < max(D(uy, S2), D(us, $1)).
Proof : Consider the following cases:

1. Ty < Tyy < Ty < Ty (Flgure43(a)) Then,D(Uy, 81) (Ul,Sg) andD(UQ,SQ) <
D(uy, $2), hencemax(D(uq, s1), D(us, s9)) < max(D(uq, s2), D(us, s1)).

2. Ty, < xs, < Ty, < x5, (Figured.3(b)). Then,D(ui,s1) < D(ui,s2) and D(ug, s2) <
D(uy, s2), hencemax(D(uq, s1), D(us, s9)) < max(D(uq, s2), D(us, s1)).

3. xs, < Ty < Ty, <z, (Figure4.3(c)). Then,D(ui, s1) < D(uz,s1) and D(ug, s2) <
D(uy, s2), hencemax(D(uq, s1), D(us, s9)) < max(D(uq, s2), D(us, s1)).

4. xg < Ty, < Ts, < Ty,. Symmetric to case (2).

5. x4, < 5, < Ty, < xy,. Symmetric to case (1). O

This way, we switch the assignment of every order-violapiag of users until eventually an order-
preserving assignment is achieved.

It follows that every optimal assignment for min-mgd®8 is either order-preserving, or can be
transformed into an order-preserving assignment thatéea equal service delay. O

We now identify the recursive structure of an optimal assigntA*. Let A7 for 1 <i <n
andl < j < k be an optimal assignment for usdtrs, . . . , u, } that employs server{Ssj, ey Sk}
We can assigit = 0,...,n — i + 1 leftmost users to servey;. This assignment defines the
maximum delay among the leftmost users. From the optimaﬁty the assignment;,, .., of
the remaining users to the remaining servers is also an aptine. Hence,

My * M
AMO) = _min | [max(8y, () + g [z, — 2 b AY O @)

40

The boundary conditions areA (*n +1,5) = 0 (no users), and\™ (*i, k + 1) = oo (no
servers), forl < i < nandl < j < k. The global optimal assignment costAs? (*(U, S)) =
AM(N).

Optimal assignments can be computed through dynamic progiag [48], using the above
recurrence. An optimal algorithm employs a two-dimensiteigleTable[l..n+1, 1..k+1], where
an entryrableli, j] holds the value oA ();), and the number of users assigned toNote that

max |rs; — Ty, ,| = max(|rs, — oy,

o<l'<l) |x8j T Luiyy g |)v

and hence, the computation of a single emtiyle|:, j] incursO(1) operations for each examined
entryTable[i + [,j + 1]. A naive implementation examin€s(n) such entries, an therefore, the
time complexity of filling the whole table i©(kn?). This result can be improved by noting that
Eq. @.1) defines a min-max among the value pairsofl) = d, (1) + maxo<y < |75, — 7, | (@

non-decreasing function @f andg; ;(1) = AM();,, ;,,) (@ non-increasing function @j. Hence,

the min-max is achieved for the value lofor which f; ;(1) — g, ;({) is closest to zero. It can be
efficiently found through binary search, which yiel@$log n) operations for a single table entry,

andO(knlogn) operations altogether.

4.4 Min-Average Load-Distance Balancing

We now demonstrate an efficient polynomial-time algoritlomrhin-averag@&DB assignment, and
an alternative solution for the linear case, which has amawgd running time.

4.4.1 The Optimal Algorithm

Assumption: We assume that for each serwerthe functionzds(x) is convex (most practical
congestion delay functions satisfy this requirement).

The algorithm reduces the assignment problem to minimustfoatching in a bipartite graph.
The left part containg users, and the right part containgopies of each server (i.e:k nodes).
The cost of connecting userto thei'th instance of serves is defined as

Ai(u,s) = D(u, s) +i6,(i) — (i — 1)8,(i — 1).

Intuitively, these costs amarginalcosts in the assignment, that4s;(u, s) is the cost of connect-
ing useru to servers afteri — 1 other users.

The algorithm computes a minimum-cost matching in the constd graph (i.e., each user is
assigned to exactly one server copy), and turns this majc¢hio a legal assignment by assigning
each user to the server it is matched to, regardless of thenicesnumber.

Theorem 4.5. The algorithm computes an optimal assignment for min-ayekaB.

Proof. We first claim that if the copy; of servers is utilized by the matching, then all the copies
s; for j <7 are used too. Indeed, suppose by contradiction thatwusematched to some copy

41

(: > 1), ands;_; is not used. Iz is switched froms; to s;_;, the matching cost can be reduced by
Aj(u,s) — A1 (u, 8) =i05(2) + (i — 2)05(i — 2) — 204(7 — 1),

which is a positive value sinced,(z) is a convex function. Hence, the matching’s cost can be
improved, in contradiction to optimality.

Consider a matching in the bipartite graph for which the set of used instancesoheserver
is contiguous, and the corresponding assignmeot the original problem. We denote the set of
users assigned to some instance of sefusr.(s), and the user assigned to il copy of server
s by u;(s). Since the used copy set is contiguous, the sum of indivichaathing cost of the users
in u(s) telescopes to

S Ailui(s).) |u()18s(1u(s)) + S Dguils),)
)

IZ (s[(i(5);8) +0s(u(5)])]
= Au, A).

Hence, the matching’s cost is equal to the cost of an assigihfoe the original problem.
Therefore, since the minimum-cost matchimghas the desired instance continuity property, it
produces a minimum-cost assignmant O

4.4.2 Improving the Running Time on a Line with Euclidean Digances

The fastest known minimum-cost flow algorithm on a gréffv, E) runs inO(| E| log |V |(| E| +
|V|1log |V])) time [83]. We construct a bipartite graph in whi¢ghi| = O(nk) and|E| = O(kn?),
hence the running time 9 (kn? log(nk)(kn* + nklog(nk))) = O(k*n*logn). In a special case
when users and servers are located on a line segment, anotkelays are modeled as Euclidean
distances, this running time can be significantly improv&dilarly to the min-max.DB problem,
the min-averag&DB on a line has an order-preserving optimal assignment. Henpelynomial
time dynamic programming algorithm similar to the one pnésé in Sectiort.3.3is applicable in
this case. The algorithm’s running time(¥kn?) (in contrast to the min-makbB, it cannot apply
the binary search optimization to reduce the number of dipgison a single table entry tog n).

42

Chapter 5

Scalable Load-Distance Balancing

Chapter4 introduced a novelbad-distance balancingroblem, orLDB, which arises in the con-
text of assigning multiple users of delay-sensitive neknagplications to geographically scattered
servers in a way that minimizes the delays incurred to thesesu The service-level delay is af-
fected by network distances as well as by server loads. Hemreputing an assignment that
minimizes this delay requires to consider both factors ttogre For example, straightforward ap-
proaches like always assigning every user to the closestrser spreading all users evenly across
random servers produce unsatisfactory results, sincecdmayot adapt to varying distributions of
location among the users.

Resource management problems in which a naive local aseigrieads to suboptimal results
are often solved centrally. For example, Cisco wirelesallaea network (WLAN) controllerdl]
perform global optimization in assigning wireless useradoess points (APs), after collecting the
signal strength information from all managed APs. Whils tipproach is feasible for medium-size
installations like enterprise WLANS, its scalability mag thallenged in large networks like an ur-
ban WMN. For large-scale network management, a distribotetbcol with local communication
is required.

We observe, however, that load-distance-balanced assigireannot always be done in a com-
pletely local manner. For example, if some part of the netvimheavily congested, then a large
number of servers around it must be harnessed to balancedtie In extreme cases, the whole
network may need to be involved in order to dissipate the #iee load. A major challenge is
therefore to provide aadaptivesolution that performs communication to a distance propoa
to that required for handling the given load in each problestance. We address this challenge,
drawing inspiration from workload-adaptive distributédaithms [31, 72].

In Section5.3, we present two distributed algorithms for load-distanataibcing,Tree and
Ripple, which adjust their communication requirements to the estign distribution, and pro-
duce constant approximations of the optimal cfste andRipple dynamically partition the user
and server space intdusterswhose sizes vary according to the network congestion, and Hte
problem in a centralized manner within every such clusteee does this by using a fixed hier-
archy of clusters, so that whenever a small cluster is ooagested and needs to offload users,
this cluster is merged with its sibling in the hierarchy, ahd problem is solved in the parent
cluster. WhileTree is simple and guarantees a logarithmic convergence tinseffiers from two

43

drawbacks. First, it requires maintaining a hierarchy agnthre servers, which may be difficult
in a dynamic network. Secontiree fails to load-balance across the boundaries of the hieyarch
To overcome these shortcomings, we present a second disttiblgorithmRipple, which does
not require maintaining a complex infrastructure, and e lower costs and better scalability,
through a more careful load sharing policy. The absence ofeal fhierarchical structure turns
out to be quite subtle, as the unstructured merges introdwweeconditions. In Appendicés5.1
and5.5.2we prove thafree andRipple always converge to solutions that approximate the opti-
mal one within a constant factor. For simplicity, we predauth algorithms for a static workload.
In Section5.5.3 we discuss how they can be extended to cope with dynamicleadg.

We note that even as a centralized optimization problemptimemax variation ofLDB that
seeks minimizing thenaximundelay is NP-hard, as we showed in ChapgltefhereforeTree and
Ripple employ a centralized polynomial 2-approximation algont®BFlow, within each cluster.
The details oBFlow were presented in Secti@n3.2

Finally, we empirically evaluate our algorithms using aecatudy in an urban WMN envi-
ronment (Sectiorb.4). Our simulation results show that both algorithms achisigmificantly
better costs than naive nearest-neighbor and perfectialacing heuristics (which are the only
previous solutions that we are aware of), while communmcgtd small distances and converging
promptly. The algorithms’ metrics (obtained cost, conesice time, and communication distance)
are scalable and congestion-sensitive, that is, they dieperhe distribution of workload rather
than the network size. The simulation results demonstratmaistent advantage bipple in the
achieved cost, due to its higher adaptiveness to user wawklo

5.1 Related Work

Load-distance balancing is an extension of the well-stithad balancing problem (e.g29]).
In contrast with distributed algorithms for traditionakald balancing (e.g.,6f]), our solutions
explicitly use the cost function’s distance-sensitivaunato achieve locality.

A number of papers addressed geographic load-balancingllmar networks and wireless
LANSs (e.g., R9, 52]), and proposed local solutions that dynamically adjuditsiezes. While the
motivation of these works is similar to ours, their modelasstrained by the rigid requirement that
a user can only be assigned to a base station within its tiasgm range. Our model, in which
network distance is part of cost rather than a constraira,dstter match for wide-area networks
like WMNs, CDNs, and gaming grids. Dealing with locality inig setting is more challenging
because the potential assignment space is very large.

Workload-adaptive server selection was handled in theextiof CDNSs, e.g.,§3]. In contrast
with our approach, in which the servers collectively de@dehe assignment, they chose a differ-
ent solution, in which users probe the servers to make alselfisice. The practical downside of
this design is a need to either install client software, gutoprobing at a dedicated tier, e.chfl.

Local solutions of network optimization problems have baddressed starting fron8]], in
which the question “what can be computed locally?” was fiskted by Naor and Stockmeyer.
Recently, different optimization problems have been stddin the local distributed setting, e.g.,
Facility Location [79], Minimum Dominating Set and Maximum Independent S&l|] While

44

some papers explore the tradeoff between the allowed rgrtimime and the approximation ratio
(e.g., [79]), we take another approach — namely, the algorithm ackiagévenapproximation ra-
tio, while adapting its running time and communication aingte to the workload. Similar methods
have been applied in related areas, e.g., fault-localssalilizing consensu§g], and local dis-
tributed aggregation3[l]. For example, inT2], only a close neighborhood of the compromised
nodes participates in the failure recovery process.

5.2 Definitions and System Model

For completeness of presentation, we define the min-tb@xproblem (in this context.DB for
brevity). This definition also appears in Chapter

Consider a set of serversS and a set of, user session§, such that: < n. Thenetwork
delayfunction,D : (U x S) — R*, captures the network distance between a user and a seheer. T
users and the servers do not necessarily reside in a metige gpe.,D is not necessarily subject
to the triangle inequality).

Consider an assignmeit: U — S that maps every user to a single server. Each serlias
a monotonic non-decreasiegngestion delafunction,d, : N — R*, reflecting the delay it incurs
to every assigned session. For simplicity, all users inceirseame load. Different servers can have
different congestion delay functions. The service deldy, \) of session: in assignmenh is the
sum of the two delays:

A(u, N) = D(u, Mu)) + My ([{v : A(v) = Au)}]).
The cost of an assignmehits themaximundelay it incurs on a user:

AMNU)) & max A(u, A).
The goalis to find an assignmexitsuch thatA™ (*(U)) is minimized. An assignment that yields
the minimum cost is calledptimal This problem is NP-hard (Chaptd). Our optimization goal
is therefore to find a constant approximation algorithm Fas problem. We denote the problem
of computing arv-approximation foiL.DB as«—LDB.

We solve thex—LDB problem in a failure-free distributed setting, in whichsss can com-
municate directly and reliably. The set of server congediimctions{J,} is known to all servers.
The network delay functio® is known as well, i.e., given a user’s location, the netwastathce
between this user and any one of the servers can be computeatvir, the location of each user
is initially known only to the closest server, i.e., the [boa information is not globally available.

We concentrate on synchronous protocols, whereby the B@aquroceeds in phases. In each
phase, a server can send messages to other servers, reessages sent by other servers in the
same phase, and perform local computation. This form ofgmtasion is chosen for simplicity,
since in our context synchronizers can be used handle asymcle.g., R1]).

Throughout the protocol, every server knows which userassgyned to it. At startup, every
user is assigned to the closest server (this is callBeh@aestServer assignment). Servers can

45

then exchange the user information, and alter this inisaignment. Eventually, the following
conditions must hold: (1) the assignment stops changingl(ihter-server communication stops;
and (3) the assignment solves-LDB for a givena.

In addition to the cost, in the distributed case we also nreafur each individual server its
convergence tim@ghe number of phases that this server is engaged in comatiomng, andocality
(the number of servers that it communicates with).

5.3 Distributed LD-Balanced Assignment

In this section, we present two synchronous distributedrétyns,Tree andRipple, for «—LDB
assignment. These algorithms use as a black box a centraligerithmALG (e.g.,BFlow (Chap-
ter 4) which computes am,;;-approximation for a given instance of theB problem. They are
also parametrized by threquiredapproximation ratiax, which is greater or equal tq;;. Both
algorithms assume some linear ordering of the seners; {si,...,sx}. In order to improve
communication locality, it is desirable to employ a logglitreserving ordering (e.g., a Hilbert
space-filling curve on a plan8%), but this is not required for correctness.

Both Tree andRipple partition the network into non-overlapping zones calbhasters and
restrict user assignments to servers residing in the sanstecl(we call thesénternal assign-
ments). Every cluster contains a contiguous range of seweh respect to the given ordering.
The number of servers in a cluster is called ¢hester size

Initially, every cluster consists of a single server. Sujosatly, clusters can grow through
merging. The clusters’ growth is congestion-sensitive, ioaded areas are surrounded by large
clusters. This clustering approach balances between eatizatl assignment, which requires col-
lecting all the user information at a single site, and thaesaserver assignment, which can pro-
duce an unacceptably high cost if the distribution of useskewed. The distance-sensitive nature
of the cost function typically leads to small clusters. Thester sizes also depend anthe larger
a is, the smaller the constructed clusters are.

We call a values, such thatv = (1 + ¢)ryq, the algorithm’sslack factor A cluster is called
e-improvablewith respect ta\LG if the cluster’'s cost can be reduced by a factot af = by har-
nessing all the servers in the network for the users of thistel alone. Note thatimprovability
is a locally computable property, i.e., the informationuiegd for its computation is confined to
the locations of users within the cluster, and the locatenms congestion functions of the servers
outside it (a small-scale shared information)improvability provides a local bound on how far
this cluster’s current cost can be from the optimal costeaable withALG. Specifically, if no clus-
ter ise-improvable, then the current local assignment$ & ¢)-approximation of the centralized
assignment witlALG. A cluster containing the entire network is vacuously nmpiiovable.

Within each cluster, a designatéshder server collects full information, and computes the
internal assignment. Under this assignment, a clusterssis defined as the maximum service
delay among the users in this cluster. Only cluster lead®gage in inter-cluster communication.
The distance between the communicating servers is propaitio the larger cluster's diameter.
When two or more clusters merge, a leader of one of them bextimedeader of the uniomree
andRipple differ in their merging policies, i.e., which clusters caenge (and which leaders can

46

communicate for that).

5.3.1 Tree - a Simple Distributed Algorithm

We present a simple algorithmiree, which employs dixed binary hierarchy among servers.
Every server belongs to level zero, every second servengslto level one, and so forth (that is,
a single server can belong to up[tog, k] levels). Fori > 0 andl > 0, serveri x 2! is a level
parentof server2i x 2!-1 (i.e., itself) and2i + 1) x 2!~! at levell — 1.

The algorithm proceeds in rounds. Initially, every clustensists of a single server. During
round/ > 0, the leader of every cluster created in the previous roued @ server at levél— 1)
checks whether its cluster isimprovable. If it is, the leader sends a merge request tpatent
at levell. Upon receiving this request from at least one child, thepiaserver merges all its de-
scendants into a single cluster, i.e., collects full infation from these descendants, computes the
internal assignment usingd.G, and becomes the new cluster’s leader. Collecting fullrimfation
during a merge is implemented through a sending a query fnenevvel! leader to all the servers
in the new cluster, and collecting the replies.

A single round consists of three synchronous phases: thefiese initiates the process with a
“merge” message (from a child to its parent), the second dissemsitia&query” message (from
a leader to all its descendants), and the third collectsrdpdy” messages (from all descendants
back to the leader). Communication during the last two phaaa be optimized by exploiting the
fact that a server at levél- 1 that initiates the merge already possesses full informdtmm all
the servers in its own cluster (that is, half of the servete@mew one), and hence, this information
can be queried by its parent directly from it. If the same sery both the merge initiator and the
new leader, this query can be eliminated altogether.

Figure5.1(a) depicts a sample clusteringlafee where 16 servers reside od & 4 grid and are
ordered using a a Hilbert curve. The small clusters did n@vdrecause they were not improvable,
and the large clusters were formed because their sub-dugege improvable. Note that the size
of each cluster is a power of 2.

Tree guarantees that neimprovable clusters remain at the end of some round L <
[log, k|, and all communication ceases. We conclude the followihg firoof appears in Sec-
tion 5.5.1):

Theorem 5.1. ree’s convergence and cost)

1. If the last communication round is < L < [log, k], then there exists an-improvable
cluster of siz&>~!. The size of the largest constructed clustenis (k, 2%).

2. The final (stable) assignment’s cost is@@approximation of the optimal cost.

In Section5.4, we conduct a case study which demonstrates that in pratiiee’s averagecon-
vergence time and cluster size remain nearly constant itimétwork’s growth.

Tree has some shortcomings. First, it requires maintaining ealéy among all servers.
Second, the use of this static hierarchy leads it to makeogtipal merges. For example, a loaded
cluster may have an unloaded neighbor on one side, but tigehigyarchy causes it to merge with

a7

* oo LALSLIE) oo oo
oco'ee Sy PP o olee
o000 oojee o oe0
o oloe aryrIrsrs o & ole
(a) SampleTree clustering (b) Hard workload forrree (c) Sampleripple clustering

Figure 5.1:Example workloads for the algorithms and clusters formed bythem in a4 x 4 grid
with Hilbert ordering. (a) A sample clustering {A, B, C, D, E'} produced by Tree. (b) A hard
workload for Tree: 2N users in cell 8 (dark gray), no users in cell 9 (white), andV users in
every other cell (light gray). (c) A sample clustering{ A, B, C, D, E'} produced byRipple.

neighbors on the other side, which are also loaded, and hredoee its cost less. Figukel(b)
shows an example workload on the network in Figuféa). The congestion delay of each server is
zero for aload below + 1, and infinite otherwise. Assume that cell 8 containsusers (depicted
dark gray in the figure), cell 9 is empty of users (white), anerg other cell containd/ users (light
gray). An execution ofree eventually merges the whole graph into a single clustemafgrvalue

of ¢, because no clustering sf, . . ., sg that achieves the maximum load of at més{and hence,

a finite cost) exists. Therefore, due to the rigid hierartheg,algorithm misses the opportunity to
mergess andsg into a single cluster, and solve the problem within a smatjmeorhood.

5.3.2 Ripple - an Adaptive Distributed Algorithm

Ripple, a workload-adaptive algorithm, remedies the shortcomoidlree by providing more
flexibility in the choice of the neighboring clusters to merngith. Unlike Tree, in which ane-
improvable cluster always expands within a pre-definedanodry, inRipple, this cluster tries to
merge only with neighboring clusters sxihallercosts. This typically results in better load-sharing,
which reduces the cost compared to the previous algorithime. cTusters constructed By pple
may be therefore highly unstructured (e.g., Fighr#&c)). The elimination of the hierarchy also
introduces some challenges and race conditions betweaasegrom different neighbors.

Section5.3.2makes some formal definitions and presetitsple at a high level. The algo-
rithm’s technical details are provided in Secti®r3.2 Section5.3.2claimsRipple’s properties;
their formal proofs appear in Secti@nb.2

Overview

We introduce some definitions. A cluster is denatédf its current leader is;. The cluster’s cost
and improvability flag are denoted lgy;.cost and C;.imp, respectively. Two cluster§; andC}
(1 <i < j < k) are callecheighborsif there exists ari such that serves; belongs to cluste€’;
and serves;,, belongs to clustet’;. ClusterC; is said todominateclusterC; if:

1. C;.imp = true, and

48

Message Semantics Size

(“probe”,id,cost,imp Assignment summary (cost andmprovability) small, fixed
(“propose”,id) Proposal to join small, fixed

("accept”,id, \,nid) Accept to join, includes full assignment information lardepends on #users

Constants Value

L,R, 14 0, 1, the server'sid
Variable Semantics Initial value
LeaderId the cluster leader’s id Id

A the internal assignment NearestServer
cost the cluster’s cost AM (NearestServer)
NbrId|2] the L/R neighbor cluster leader’s id {Ia—1,Id+ 1}
ProbeSent[2] “probe“ to L/R neighbor sent? {false,false}
ProbeRecv[2] “probe“ from the L/R neighbor received? {false,false}
ProposeRecv[2] “propose” from L/R neighbor received? {false, false}
ProbeFwd[2] need to forwardprobe“ to L/R? {false, false}
Probe|2] need to sentprobe” to L/R in the next round? {true, true}
Propose|[2] need to sentpropose” to L/R? {false,false}
Accept|2] need to senthccept” to L/R? {false, false}

Table 5.1 Ripple’s messages, constants, and state variables.

2. (Cj.cost,Ciimp, i) > (Cj.cost, Cj.imp, j), in lexicographic orderinp and cluster index
are used to break ties).

Ripple proceeds in rounds, each consisting of four synchronousgsh®uring a round, a cluster
that dominates some (left or right) neighbor tries to rediieeost by inviting this neighbor to

merge with it. A cluster that dominates two neighbors cangaevith both in the same round.
A dominated cluster can only merge with a single neighbor@arhot split. When two clusters
merge, the leader of the dominating cluster becomes thenisreader.

Dominance alone cannot be used to decide about mergingubecause the decisions made
by multiple neighbors may be conflicting. It is possible falaster to dominate one neighbor and
be dominated by the other neighbor, or to be dominated byretihbors. The algorithm resolves
these conflicts by uniform coin-tossing. If a cluster leda&s two choices, it selects one of them
at random. If the chosen neighbor also has a conflict and itldedifferently, no merge happens.
When no cluster dominates any of its neighbors, all comnatito stops, and the assignment
remains globally stable.

The algorithm guarantees that in every round in which compafion happens, the number of
clusters decreases by at least one. Moreover, since theofirsd in which no cluster leader sends
a message, all communication stops.

Detailed Description

In this section, we preseRtipple’s technical details. Tablb.1 provides a summary of the pro-
tocol's messages, constants, and state variables. See Bi@dor the pseudo-code. We assume

49

1 e 1 1

| | I I Plu
W Phase 1 rplub\i Phase 1 %\VM Phase 1
71 77777777777777 Phase 2 7[;;)‘;66{ Phase 2 } 3 Phase 2
o T Sbrope r R g ej* ********** =y
i Se. Phase 3 | 05\1 Phase 3 | RE "‘0"0 ' Phase 3
e L 3 :
: o | R IS ‘/ ””” |
/ ase / ase | pt\‘: i Phase 4
(a) Simultaneous probe: (b) Late probe: (c) <« conflict resolution:
s1 ands, send messages in Phase 1. so sends message in Phase 2. so proposes ta; and rejectss.
E!m,,
e\p‘M Phase 1 Phase 1
Phase 2 Phase 2
P rOPOSe\ /9‘090 ! Phase 3 %"Pfopose\%\i\ﬂ Phase 3
/,,ccew‘ Phase 4 T hases
(d) =< conflict resolution: (e) Probe forwarding:
so accepts; and rejectss. so forwards tos, s3 forwards tosy.

Figure 5.2:Ripple’s scenarios. Nodes in solid frames are cluster leaders. D@ ovals encir-
cle servers in the same cluster.

the existence of local functiond.G : (U,S) — X\, AM : A — R*, andimprovable : (\,&) —
{true, false}, which compute the assignment, its cost, and the imprawabidg.

In each round, neighbors that do not have each other’s cdsingprovability data exchange
“probe” messages with this information. Subsequently, dominalingter leaders serfgropose”
messages to invite others to merge with them, and clusteéetedhat agree respond witccept”
messages with full assignment information. More speclficalround consists of four phases:

Phase 1 - probe initiation. A cluster leader sends‘probe” message to neighboif Probei]
istrue (Lines 4-5). Upon receiving a probe from a neighbor, if thestér dominates this neighbor,
the cluster’s leader schedules a proposal to merge (Lineab@l) also decides to send a probe to
the neighbor in this direction in the next round (Line 52)thé neighbor dominates the cluster,
the cluster’s leader decides to accept the neighbor’s gadfgo merge, should it later arrive (Line
51). Figureb.2(a) depicts a simultaneous mutual probe. If neither of twigiieors sends a probe,
no further communication between these neighbors occumsgitihe round.

Phase 2 - probe completion.If a cluster leader does not send@obe” message to some
neighbor in Phase 1 and receives one from this neighbomndsse laté'probe” in Phase 2 (Lines
13-14). Figurés.2(b) depicts this late probe scenario. Another case thatridled during Phase
2 is probe forwarding. Aprobe” message sent in Phase 1 can arrive to a non-leader due to a
stale neighbor id at the sender. The receiver then forwamlsessage to its leader (Lines 17-18).
Figure5.2(e) depicts this scenario: serverforwards a message from to s,, ands; forwards a
message fromy, to s;.

Phase 3 - conflict resolution and proposal.A cluster leader locally resolves all conflicts,
by randomly choosing whether to cancel the scheduled pedbpo®ne neighbor, or to reject the

50

expected proposal from one neighbor (Lines 56-65). FigbiZs) and5.2(d) illustrate the reso-
lution scenarios. The rejection is implicit: simply, faccept” is sent. Finally, the leader sends
“propose” messages to one or two neighbors, as needed (Lines 26-27).

Phase 4 - acceptancdf a cluster leader receives a proposal from a neighbor acepds this
proposal, then it updates the leader id, and replies wittaacept” message with full information
about the current assignment within the cluster, includiveglocations of all the users (Line 35).
The message also includes the id of the leader of the neigttgbduster in the opposite direction,
which is anticipated to be the new neighbor of the consumiuagter. If the neighboring cluster
itself is consumed too, then this information will be stalEhe latter situation is addressed by
the forwarding mechanism in Phase 2, as illustrated by Eif#(e). At the end of the round, a
consuming cluster’s leader re-computes the assignmehinwis cluster (Lines 67—69). Note that
a merger does not necessarily improve the assignment ous#,aslocal assignment proced Aies
is not an optimal algorithm. If this happens, the assignmetitin each of the original clusters
remains intact. If the assignment cost is reduced, thenehel@ader decides to send@obe”
message to both neighbors in the next round (Lines 70-71).

Ripple’s Properties

We now discus8ipple’s properties. Their proofs appear in Sectmb.2

Theorem 5.2. Ripple’s convergence and cost)

1. Within at most rounds ofRipple, all communication ceases, and the assignment does not
change.

2. The final (stable) assignment’s cost ise@approximation of the optimal cost.

Note that the theoretical upper bound on the convergence isrh despite potentially conflict-
ing coin flips. This bound is tight (see Sectibrb.2. However, the worst-case scenario is not
representative. Our case study (Secttof) shows that in realistic scenaridsipple’s average
convergence time and cluster size remain flat as the networksg

For some workloads, we can proBépple’s near-optimal locality, e.g., when the workload
has a single congestion peak:

Theorem 5.3. Ripple’s locality) Consider a workload in which servet is the nearest server
for all users. LetC' be the smallest non-improvable cluster that includes. Then, the size of
the largest cluster constructed Bypple is at mosg|C| — 1, and the convergence time is at most
|C| — 1.

An immediate generalization of this claim is that if the wiodd is a set of isolated congestion
peaks that have independent local solutions, thigsple builds these solutions in parallel, and
stabilizes in a time required to resolve the largest peak.

51

1: Phase 1{Probe initiation} : 41: procedure initState(dir)
2: forall dir € {L,R} do 42: ProbeSent|dir| < ProbeRecv|dir| < false
3: initState(dir) 43: Propose|dir] «— Accept|dir] «— false
4 if (LeaderId = Id A Probe[dir]) then 44: ProbeFwd[dir] « false
5 send (“probe ‘[‘, I(}, cost, improvable(A,¢)) (:
to NbrId|dir 45: procedurehandleProbe(id, cost,imp
6: ProbeSent|dir] < true 46: dir «— direction(id)
7 Probe[dir] < false 47: ProbeRecv|dir| < true
8: forall received (“probe“, id, cost,imp) do 48: NbrId[dir] —id
9: handleProbe(id, cost,imp) ‘513 if (LeaderI{;:] Id) then
: Propose|dir| «
10: Phase 2{Probe completioh: dominates(Id, cost,improvable(A,¢),id, cost,imp)
11: if (LeaderId = I4) then 51 din]
12: forall dir € {L, R} do : Accept|air] — .
13: if (~ProbeSent|dir] A ProbeRecv|dir]) dominates(id, cost,imp, Id, cost, improvable(A,¢))
then
14: send (“probe“; 1d, cost, improvable(A, 5)22: | Probe|dir| < Propose|dir]
to NbrId[dir| else
15: else 54: ProbeFwd[dir] < true
16: forall dir € {L, R} do
17: if (ProbeFid[diT}]) then 55: procedureresolveConflicts()
18: sendthe latestprobe” to LeaderId 56: { Resolye:<: or == conflicts
19: forall received (“probe®,id, cost,imp) do 57: for. all dir {L’.R} do —
20 hand1eProbe(id, cost, imp) 58: if (_Propose[dzr] A Accept[dir]) then
’ ’ ’ 59: if (randomBit() = 0) then
21: Phase 3{Conflict resolution and proposht 605 Propose[dir] < false
U 61: else
22: if (LeaderId = Id)then : —
: . 62: Acceptl|dir] < false
23: resolveConflicts() : .
63: {Resolve=<« conflict}
24: {Send Pmposals to merge 64: if (Accept|[L] A Accept[R]) conflictsthen
25: fOI’. all dir € {L, R} do 65: Accept[randomBit()] « false
26: if (Propose[dir]) then
27 send (“propose*, Id) to NbrId[dir] 66: procedure computeAssignment()
28: forall received (“propose”,id) do 67: A’ — ALG(Users(A), Servers(A))
29: ProposeRecv|direction(id)| < true 68: if (AM(A') < AM(A))then
69: A+ N;cost «— AM(A')
30: Phase 4{Acceptance or rejection: 70: forall dir € {L, R} do
31: forall dir € {L, R} do 71: Probe[dir] « true
32: if (ProposeRecv(dir) A Accept[dir]) then
33: {I do not object joining with this neighbdr 72: function dominates(idy, costy, imps,
34: LeaderId « NbrId[dir] L ida, costa, imps)
35: send (“accept”,Id, A,NbrId[dir]) to LeaderId: return (impl A . . '
36: forall received (“accept®,id, \,nid) do (impy, costy, idy) > (impz, costy, idy))
37: A — AU cost — AM(A))
38: NbrId[direction(id)] « nid 74: function di'rectior;(zd)
39: if (LeaderId = Id) then 75: reum (id <1d)7L: R
40: computeAssignment()

Figure 5.3:Ripple’s pseudo-code: single round.

52

5.4 Numerical Evaluation

In this section, we emplo¥ree andRipple for gateway assignment in an urban WMN, using
the BFlow centralized algorithm (Chapteh) for local assignment. We compare our algorithms
with NearestServer. Due to lack of space, we omit the results of comparison wattiget load-
balancing, which performs much worse thararestServer.

The WMN provides access to a real-time service (e.g., a mktgame). The mesh gateways,
which are also application servers, form a rectangular. gritis topology induces a partitioning
of the space into cells. The wireless backbone within ealthsca 16 x 16 grid of mesh routers,
which route the traffic either to the gateway, or to the negghiyg cells. The routers apply flow
aggregation$8], thus smoothing the impact of network congestion on lin&naies. Each wireless
hop introduces an average delay of 6ms. The congestion dekyery gateway (in ms) is equal
to the load. For example, consider a workload of 100 userf®umiy distributed within a single
cell, under thelearestServer assignment. With high probability, there is some user ctogbe
corner of the cell. The network distance between this usetlam gateway is is 16 wireless hops,
incurring a network delay of6 x 6ms ~ 100ms, and yielding a maximum service delay close to
100 + 100 = 200ms (i.e., the two delay types have equal contribution).

Every experiment employs a superposition of uniform andkype&arkloads. We call a normal
distribution with variance? around a randomly chosen point on a plammagestion peakR is
called theeffective radiu®f this peak. Every data point is averaged over 20 runs. Rbante, the
maximal convergence time in the plot is an average over al of the maximal convergence time
among all servers in individual runs.

Sensitivity to slack factor We first consider a 64-gateway WMN (this size will be increhse
in the next experiments), and evaluate how the algorithmsts; convergence times, and locality
depend on the slack factor. The workload is a mix of a uniforgtrithution of 6400 users with
6400 additional users in ten congestion peaks with effectadii of 200m. We consider values of
e ranging from 0 to 2. The results show that b@#tee andRipple significantly improve the cost
achieved byearestServer (Figure5.4(a)). For comparison, we also depict the theoretical cost
guarantee of both algorithms, i.€1,+ ¢) times the cost oBFlow with global information. We see
that fore > 0, the algorithms’ costs are well below this upper bound.

Figure5.4(b) demonstrates how the algorithms’ convergence timeolimds) depends on the
slack factor. Foe = 0 (the best possible approximation), the whole network awahyt merges
into a single cluster. We see that although theoreticalpple may require 64 rounds to converge,
in practice it completes in 8 rounds even with minimal slaéis expectedTree converges in
log, 64 = 6 rounds in this setting. Note that fer= 0, Tree’s average convergence time is also
6 rounds (versus 2.1 fdtipple) because the algorithm employs broadcasting that invaliles
servers in every round. Both algorithms complete fasteriasncreased.

Figure5.4(c) depicts how the algorithms’ average and maximal clusizgs depend on The
average cluster size does not exceed 2.5 servers for0.5. The maximal size drops fast as
increases. Note that for the same value diipple builds slightly larger maximal-size clusters
thanTree, while the average cluster size is the same (hence, moseédudsrmed byRipple are

53

smaller). This reflect8ipple’s workload-adaptive nature: it builds bigger clusters vehthere
is a bigger need to balance the load, and smaller ones wheneithless need. This will become
more pronounced as the system grows, as we shall see in theeuton.

Sensitivity to network size Next, we explor&ree’s andRipple’s scalability with the network
size, fore = 0.5 and the same workload as in the previous section. We gradinallease the
number of gateways from 64 to 1024. Figiwr® depicts the results in logarithmic scale. We see
that thanks t@Ripple’s flexibility, its cost scales better thafree’s, remaining almost constant
with the network growth (Figur&.5a)). Note thatlearestServer becomes even more inferior
in large networks, since it is affected by the growth of thpestedmaximumoad among all cells
as the network expands.

Figure5.5b) and Figures.5c) demonstrate thaipple's advantage in cost does not entail
longer convergence times or less locality: it convergetefamd builds smaller clusters tharee.
This happens becauSeee’s rigid cluster construction policy becomes more costlyhesnetwork
grows (the cluster sizes in the hierarchy grow exponejiall

Sensitivity to user distribution We study the algorithms’ sensitivity to varying workload-pa
rameters, like congestion skew and the size of congested,ai@= = 0.5. We first compare
the cost ofTree, Ripple andNearestServer on different partitions of 12800 users between the
uniform and peaky distributions, the latter consistingesf peaks of effective radius 200m each
(Figure5.6(a)). For a uniform workload, all the algorithms achieve &qrost, becauseéree and
Ripple start from the nearest-server assignment and cannot impt®wcost. For increasingly
peaky workloads, the cost of the distributed local algongiremains almost flaR{pple is con-
sistently better), whil&learestServer fails to adapt to the skew.

Following this, we compargéree, Ripple andNearestServer on a workload of 12800 users
concentrated in ten peaks of varying radidm < R < 5000m (see Figureés.6(b)). For large
values of R, this workload approaches to the uniform one, and consdlyyuéiearestServer
achieves a better cost than for more peaky distributiorie previouslyRipple achieves a lower
cost tharTree.

In both experiments, the average convergence time andgerehaster size remain low and al-
most constant as the workload becomes more peaky (below@8s and 2.7 servers per cluster).
The respective maximal metrics grow wiitand R, which demonstrates that both algorithms build
larger clusters and converge slower as the population dea¢@me more congested. As before,
Ripple’s maximal convergence time and maximal cluster size aghti larger tharTree’s, due
to its load-sensitive nature.

5.5 Analysis and Extensions

5.5.1 Correctness and Performance Analysis of Tree

In this section, we prove that theee algorithm converges i) (log k) rounds and computes an
rac(1 +) approximation of the optimal cost for a local assignmentpdureALG. For conve-

54

1800} | - Ripple(e) —m— Ripple(g), maximal p - Ripple(g), maximal
-@-Tree () —0—Ripple(e), average 60 —0-Ripple(e), average

1600} | ** NearestServer| 10 ¥ Tree (g), maximal

¥ Tree (g), maximal
- (1+€)BFlow)

50|) A Tree (f), average

- Tree (), average

Convergence time (rounds)
Cluster size

15 2 0 02 05 15 2 0 02 2

1
Slack factor (g)

1
Slack factor (g)

1
Slack factor (g)

(a) Cost (b) Convergence time (maximal/averagé) Cluster size (maximal/average)

Figure 5.4: Sensitivity of Tree(¢)’s and Ripple(e)’'s cost, convergence time (rounds), and
locality (cluster size) to the slack factor, for mixed user wrkload: 50%uniform/50%peaky
(10 peaks of effective radius 200m).

3 35
—4—Ripple(0.5) —4—Ripple(0.5)

-@-Tree (0.5) -@-Tree (0.5)

N
o

Cost
Convergence time (rounds)
N
Cluster size

=
[l

1.
128 256 1. 1024 %4 128 256 512 1024 %4 128 256 512 1024
Number of servers (log-scale) Number of servers (log-scale) Number of servers (log-scale)

(a) Cost (b) Average convergence time (c) Average cluster size

Figure 5.5: Scalability of Ripple(0.5) and Tree(0.5) with the network’s size (log-scale), for
mixed workload: 50% uniform/50% peaky (10 peaks of effective radius 200m).

nience, we assume that the initial clusters are formed bglti@ithm during round = 0.
Theorem 5.1. [ree’s convergence and cost)

1. If the last communication round is < L < [log, k], then there exists an-improvable
cluster of size“~!. The size of the largest constructed clustenia(k, 2%).

2. The final (stable) assignment’s cost is@@approximation of the optimal cost.

Proof :

1. Itis straightforward that the algorithm runs for at m@sig, k| rounds. If the last commu-
nication round isl. > 1, then some server sent@merge” message at the beginning of this
round. By the algorithm, this server must be a leader af-amprovable cluster of siz&"—!.

2. Consider cluste€’ that has the highest cost when communication stops. Theotasis
cluster is als@ree’s assignment cost, because the optimization goal is a naixiteer cost.
Either this is the only cluster in the network, or it is reimprovable. In the first case, the

55

—4-Ripple(0.5)
-@-Tree (0.5)
& NearestServer

20001 —4—Ripple(0.5)

.. "\ -@-Tree (0.5)
. & NearestServer

0 20 40 60 80 100 8.5 1 15 2 25 . X
Users in congested areas (%) Effective radius of congested areas (km)

(a) Cost for variable peak load (b) Cost for variable peak size

Figure 5.6:Sensitivity of Tree(0.5)’s and Ripple(0.5)’s cost to user distribution. (a) Varying

percent of users in congestion peaks, mixed workload: (100}% uniform/p% peaky (10

peaks of effective radius 200m)) < p < 100. (b) Varying effective radius of congestion
peaks, mixed workload: 50% uniform/50% peaky (10 peaks of dective radius R, 500m <

R < 5000m).

assignment’s cost is smaller or equal to the cost of a cérgrhkolutionALG, whereas in
the second case, the assignment’s cost is at (ioste) timesALG’s cost. In all cases, the
algorithm’s approximation factor is bounded by= 7¢(1 + €). O

5.5.2 Correctness and Performance Analysis of Ripple

In this section, we prove that tiRipple algorithm converges i (k) rounds and computes an
rae(1 + €) approximation of the optimal cost for a local assignmentpdureALG. Following
this, we proveRipple’s locality property, that is, if the workload contains a gl congestion
peak, then the algorithm does not expand the cluster arodundhier than required to dissipate the
load.

Lemma 5.1. Consider two neighboring cluster leadersor C’, such thatC.1d < C’.1d. If either
of them sends grobe” message to the other in Phase 1 of some rouhdl, then by the end of
Phase 2 of the same round:

1. C.NbrId[R] = C’,andC’.NbrId[L]| = C.
2. C'and ("’ receive“probe” messages from each other.

Proof : By induction oni. If i = 1, then every cluster includes a single serverNheld vector is
updated to its predecessor and successor in the linear, ardkthe’probe” messages are sent in
both directions sincérobe[L] = Probe|R] = true. Hence, these messages arrive by the end of
Phase 1. If > 1, consider three possible cases:

1. C'andC” were neighbors in round— 1. Then, claim (1) follows from the induction hypoth-
esis. Consider a leader (e.@’) that sends the message in Phase 1. Hence, it arrives by the

56

end of this phase. 1€’ does not send grobe” in Phase 1, it does so in Phase 2 (Lines
13-14), and claim (2) follows.

2. C andC’ were separated by a single clustéin round: — 1. Hence, eithe€' or C’ merged
with C (e.g.,C). By the induction hypothesis, after Phase 2 of roumd, C .NbrId[R] = C".
This information appears in tHaccept” message sent by to C' (Line 35), and hence, at
the end of Phase 4 of round- 1, C.NbrId[R] = C'. Analogously(’ NbrId[L] = C. Claim
(2) follows as in the previous case.

3. ¢ andC’ were separated by two clusteésandC” in roundi — 1. Then,C merged withC',
andC’ merged withC", and they updated their neighbor pointers as follo@aibrId[R] =
C’, andC.NbrId[L] = C. By the algorithm, bottC’ andC’ send“probe” messages to each
other in roundi. These messages arrived andC, respectively, which forward them to
their correct destinations in Phase 2 (Lines 17-18). Whesetlmessages are received, the
neighbor information is updated. 0

Lemma 5.2. Since the first round in which no cluster leader sends a messdigcommunication
stops.

Proof. Since no‘probe” messages are sent in this round, it holds thabe[L] = Probe[R] =
false in every cluster leader at the beginning of the round. Thedégeg do not change since no
communication happens, and hence, no message is sent ailtvarig rounds, by induction. [J

We say that clustef’ wishesto merge with cluste€' if it either propose<’ to merge, or is
ready to accept a proposal fraf.

Lemma 5.3. If there is a round since which the leaders of two neighboring clust€randC’ do
not send messages to each other, then neither of thesersldstminates the other starting from
this round.

Proof. SinceC' andC” do not communicate in rounithe following conditions hold:
1. Neither ofC' andC’ dominates the other at the beginning of rodnd1 (lines 54-55).
2. Neither ofC' andC’ reduces its cost at the end of round 1 (lines 49-51).

The first condition implies one of the following two cases:
1. NeitherC nor (" is e-improvable. This property cannot change in future rounds.

2. One cluster (e.g(@)) is e-improvable, but its cost is smaller or equal the neighboo'st. By
the algorithm, neither cluster’s cost grows in round 1, and hence, both costs remain the
same.

Therefore, neithe€’ nor C’ dominates its neighbor at the end of roundnd this property holds
by induction. O

57

Consequently, by the end of Phase 2, both neighbors pos$sesarne probe information. Hence,
the values oPropose andAccept are evaluated correctly, and th@opose” and“accept” mes-
sages arrive to their destinations directly in a single phas

Lemma 5.4. In every round except the last one when communication happgba number of
clusters decreases by at least one.

Proof. Consider a round in which some communication happens. Bynw@B3, at least one
cluster dominates its neighbor in the previous round. Asstirat no mergers occur in this round
nevertheless. Consider a cluster leaddhat wishes to merge with its right (resp., left) neighbor
C'. Then necessarilg” wishes to merge with its own right (resp., left) neighbor dails too,
since no mergers occur. By induction, the rightmost (rdefimost) cluster leader wishes to join
its right (resp., left) neighbor - a contradiction. O

Theorem 5.2. Ripple’s convergence and cost)

1. Within at most rounds ofRipple, all communication ceases, and the assignment does not
change.

2. The final (stable) assignment’s cost is@@approximation of the optimal cost.

Proof :

1. Assume that some message is sent in rourkl k. Then, at least one message is sent
during every round; < i, because otherwise, by Lemrda2, all communication would
cease starting from the first round in which no messages ate Bg Lemmab.4, at least
one merger happens during every roynet i. Therefore, by the beginning of rourtd at
the latest, a single cluster remains, and no more commuomcatcurs - a contradiction.

2. Consider cluste€’ that has the highest cost when communication stops. Theotdsis
cluster is als@Ripple’s assignment cost. Either this is the only cluster in thevoekt, or
it does not dominate its neighbors, by Lem®& In the first case, the assignment’s cost
is smaller or equal to the cost of a centralized solutiagd. In the second case, either
the cluster is not-improvable, or it has a neighbor of equal cost that isaiohprovable.
Hence, the assignment’s cost is at mdst <) timesALG's cost. In all cases, the algorithm’s
approximation factor is bounded by= ry (1 + ¢). O

The theoretical upper bound on the convergence time is ti@trisider, for example, a network
in which distances are negligible, and initially, the crsvith the smallest id is heavily congested,
whereas the others are empty of users. The congested chestges with a single neighbor in each
round, due to the algorithm’s communication restrictiohisIprocess takes— 1 rounds, until all
the servers are pooled into a single cluster.

We now turn to proving the algorithm’s locality property:

Theorem 5.3. Ripple’s locality) Consider a workload in which servet is the nearest server
for all users. LetC' be the smallest non-improvable cluster that includes. Then, the size of
the largest cluster constructed Bypple is at mosg|C| — 1, and the convergence time is at most
|C| — 1.

58

Proof. The only cluster that can expand throughout the algorith@ j$n which s; is the leader.
The other clusters, which are empty of users, are vacuowsliyimprovable, and hence, contain a
single server each. I’; is initially non-improvable, then it will not merge with amther cluster,
and the claim holds trivially. Otherwise, in every rouhd> j before the completiort); absorbs
servers;_;, if i — j > 1, and serves, ., if i + j < k.

At alltimes,C; is uniquely identified by its set of servers (it is clear thabintains all the users).
Assume that the execution stabilizes after constructingster{s; ;, ..., s;+,}. By definition,C;
was stille-improvable after the penultimate round of communicatidherefore, its sub-clusters
C! = {sii11,--.,8} andC? = {s;,...,s;4+,_1} arec-improvable too, since removing servers
from a cluster without removing any user from it cannot lead tbetter local solution. Hence,
eitherC? or C!" are proper subsets of the smallest non-improvable cldstdat includess;, and
therefore|C'| > max((,r)+1. The final size of’; isi+r+1 < 2|C|+1. Ripple’s communication
stops aftetnax(l,) < |C| — 1 rounds. O

5.5.3 Handling a Dynamic Workload

For the sake of simplicity, bothiree andRipple have been presented in a static setting. However,
it is clear that the assignment must change as the userdgaire, or move, in order to meet the
optimization goal. In this section, we outline how our dlasited algorithms can be extended to
handle this dynamic setting.

We observe that the clustering producedThge andRipple is a partition of a plane into
regions, where all users in a region are associated witresem this region. As long as this
spatial partition is stable, it can be employed for dynamsgignment of new users that arrive to a
region. In a given region, the leader can either (1) re-gieahe internal assignment by re-running
the centralized algorithm in the cluster, or (2) leave adiviously assigned users on their servers,
and choose assignments for new users so as to minimize tieagecin the cluster’s cost.

Tree andRipple can be re-run to adjust the partition either periodicaltyypon changes in
the distribution of load. Simulation results in Sectid suggest that the overhead of re-running
both algorithms is not high. However, this approach maydarany users to move, since the
centralized algorithm is non-incremental. In order to @handoffs, we would like to avoid
a global change as would occur by running the algorithm fromatsh, and instead make local
adjustments in areas whose load characteristics have etlang

In order to allow such local adjustments, we change the @lgos in two ways. First, we
allow a cluster leader to initiate a merge whenever therecisamge in the conditions that caused
it not to initiate a merge in the past. That is, the merge @e@an resume after any number of
quiet rounds. Second, we add a new cluster operasialit, which is initiated by a cluster leader
when a previously congested cluster becomes lightly loaaled its sub-clusters can be satisfied
with internal assignments that are no longer improvablaeNtat barring the future load changes,
a split cluster will not re-merge, since non-improvablestéus do not initiate merges.

This dynamic approach eliminates, e.g., periodic clugteranstruction when the initial distri-
bution of load remains stationary. Race conditions thatrgenbetween cluster-splitting decisions
and concurrent proposals to merge with the neighboringeasigan be resolved with the conflict
resolution mechanism described in Sectto8.2

59

Chapter 6
QMesh

Wireless mesh networks, or WMNSs, are a rapidly maturingrietidgy for providing inexpensive
Internet access to residential areas with limited wiredheativity [16]. While initially designed
for small-scale installations (e.g., isolated neighbod®), WMNs are now envisioned to provide
citywide access and beyond through deploying thousandsagfsa points and supporting thou-
sands of simultaneous usel®]41].

WMN users access the Internet through a multihop backboffigenf wireless routers. Some
of these routers, called gateways, are connected to thel wifeastructure. The WMN assigns
each user to a gateway upon initial connection, and can migraetween gateways over time. In
traditional implementations, the gateways provide onlgidnet access. However, QoS-sensitive
applications will probably be supported by high-level sexg at the network edge, similarly to
the recent trend in wireline network8][We envision a future WMN gateway that also provides
application-level support, e.g., acts as a SIP proxy, a anseliver cache, or a full-fledged game
server B2]. This trend extends the scope of the gateway assignmeblgonao a large variety of
applications and services.

We consider gateway assignment — a traffic engineering (fdabl@m that seeks optimizing the
QoS or fully exploiting the network’s capacity for a spec#igplication. The solution must take
into account the parameters that incur QoS degradation dditianal costs, e.g., network dis-
tances and congestion, server (gateway) loads, and ajhidavel handoffs. Mature networking
systems employ TE technologies (e.g., MPIE8]] on top of their existing routing infrastructure,
to allow scalability of management. We believe that in fetWWMN's, traffic engineering solu-
tions like gateway assignment will deployed atop othergrenince optimizations that are already
in place (e.g., multiple radio4 J], smart routing metricsg1], etc.).

It is common practice in small-scale WMNs to always assigrser o the nearest gateway
(e.qg., IL8)). In this approach, gateway handoffs (macro-mobilityg ghtly coupled with link-
layer access point (AP) handoffs (micro-mobility). Thaviden a user moves and associates with
an AP that is closer to a different gateway than its curreet drmautomatically performs a gateway
handoff too. This simple approach suffers from two drawlsaélrst, it cannot adapt to load peaks
within the WMN by load-balancing among multiple gatewaygcéhd, it does not consider the
application-level impact of such gateway handoffs. Fomepd, in VoIP, handoffs are relatively
low-cost, due to a small state associated with a sessiongati@ online gaming, the performance

60

penalty of transferring the cached application state betvteo servers may be very high. Hence,
there is a need to decouple AP transitions from gateway titmd@/hile the former are purely
location-based, application-transparent, and do notiatugh performance impact], the latter
are not transparent, and should be driven by service-sp€Xifs considerations.

We propose QMesh (Sectidhd) — a framework for dynamically managing gateway assign-
ments in future WMNs that can be instantiated with applaaspecific policies. QMesh is most
beneficial for applications that allow gateway handoffaditional applications that do not handle
handoffs are supported, but might receive a degraded Qo®&s@ Manages two types of decisions
for each mobile user: (lyhento migrate it between two gateways, and (@ich gateway to
choose upon a transition. QMesh employs application-Specinsiderations to balance the trade-
off between two conflicting goals: assigning the user to &way that provides it with the best
QoS at any given time, and reducing the number of costly gatdvandoffs. QMesh does not re-
quire any extension of the underlying routing infrastruetun particular, it does not introduce any
non-scalable mechanisms like host-specific routes. SirMed makes decisions on a per-user
basis, migrating a single user does not directly affectrsthius avoiding traffic oscillations.

QMesh manages gateway handoffs in a scalable distributgdtir@ugh a low-overhead sig-
naling protocol that runs within the mesh transparentlyn® mobile user’s networking stack.
It monitorsthe QoS of application traffic flows to determine the handioffes, andprobesthe
prospective QoS to in a shadow process to select the caadidatoff targets. Probing is scalable
since it is performed within the mesh rather than separégblach user. The key to the protocol's
efficiency is its adaptive approach, which performs prol{ibjgat distances proportional to those
required for dissipating the load, and (2) at the frequescpired to satisfy the QoS needs. For
example, in a low-utilized mesh with little mobility, wheeenear gateway is likely to provide a
good performance, QMesh infrequently performs very fewbpsolimited to the close neighbor-
hood. In contrast, if load is high and current QoS is unsatisiry, QMesh is more aggressive in
probing distant gateways more frequently.

QMesh can tolerate a gateway’s failure by rapidly re-assgits users to a backup gateway.
The maintenance of backup gateways is a by-product of tHamygrotocol, i.e., it does not incur
any additional communication overhead.

We evaluate QMesh’s impact on the application QoS in a WMHNUgh extensive simulations,
mostly of VoIP but also of other real-time applications tagg more handoff-sensitive (e.g., online
games). The studied network topologies and mobility moaeglescribed in Sectidh4, whereas
Section6.5extends on the assumed MAC architecture and the traffic stihggolicies. We first
explore a campus-scale WMN (600 APs) with topology and nitgtilaces drawn from the public
CRAWDAD databased]. Since our main interest is in large-scale networks, we alsidy a
citywide WMN (4000 APs) with highly mobile users. To this emwde experiment with two user
populations: (1) a near-uniform distribution, generatgdh® popular random waypoint (RWP)
mobility model P€], and (2) a more realistic distribution biased toward th&dential centers,
induced by aralternating weighted waypoifBWWP) model for urban traffic§d5]. The numerical
results demonstrate QMesh’s significant advantage ovee mgarest-gateway assignment for all
workloads. The QoS achieved by QMesh is close to that of ard¢tieal BestMatch algorithm
that uses instantaneous perfect information. Finally, m@sthat QMesh adjusts its overhead to

61

workload in a scalable way.

6.1 Related Work

Handoff optimizations in mobile systems have been extehsaddressed since the early 1990's,
mostly in the context of cellular networks (e.d6]). These studies primarily focused on optimiz-
ing the network capacity. Handoffs in cellular networks @iggered by physical metrics, and are
handled at the link layer. The early research of mobility@281 networks focused on link-layer
issues, and on integration with the cellular networks (¢7@]). Our work is different, because we
consider the network layer and above. In this context, hiisdoe optional, they can improve the
QoS over time, but their potential performance hit is notligége.

Recently, Amir et al. presented a design and implementatidd@Mesh - a prototype WMN
with mobility support L8]. They concentrated on seamless mobility of users betwesshraccess
points. SMesh adopts the nearest-gateway handoff poley,the users of each AP are auto-
matically assigned to the gateway closest to this AP. Thisagch is appropriate in a small-size
installation described in that paper (about 20 access paimi two gateways on the same LAN
segment). However, this policy can lead to poor QoS in a i mesh, as shown herein.

Many mature networking solutions address QoS optimizatamas a traffic engineering (TE)
problem on top of the existing routing infrastructure (eNPLS in carrier networksdg]). Almost
all modern routing protocols (e.g., OSP80]) are traffic-independent, thus separating the con-
cern of optimizing the QoS of individual flows to higher-lé¥é& solutions. A different approach,
adaptive QoS routing, has been actively studied by the relsemmmunity (e.g.,42, 75]), orig-
inating at Gallagher’'s seminal work on minimum delay rogtjf7]. Many load-adaptive routing
algorithms are designed for static or quasi-static worddoand suffer from slow convergence in
highly dynamic situations. Moreover, they are complex tplement, and their behavior is hard
to predict and manage. QMesh’s design adopts the first agipfoa WMNSs.

While most TE solutions optimize the unicast Oo0S, the pnobté instantaneously optimal
gateway assignment is equivalenttaycastrouting [98] that seeks connecting each user to some
service node among a given set, so as to minimize the averdgg drhis problem is common
to multiple domains — for example, some papers pointed autrtiportance of joint handling of
distance and load in content delivery networ&8][However, we are not aware of any work that
handles dynamic anycast of flows with mobile endpoints wbdasidering handoff costs, and
proposes scalable real-time solutions.

Adaptive probing of multiple mobile anchor points (MAPs)svaroposed in the context of
hierarchical mobile IPv6 routingdp]. However, in that work, handoffs are fully dictated by ge-
ography (rather than by QoS), and the simulation scale idl §emmew MAPs, and a few tens of
users). Ganguly et al5B] suggested a number of VoIP performance optimizations inNMNV
In particular, they proposed maintaining the assignmerdazh flow to a single gateway, while
constantly probing multiple user-gateway paths and oppastically re-routing the traffic through
the best path. Unlike QMesh, this approach tightly coupéte/ben gateway selection and routing,
and induces non-scalable host-specific paths within théames

62

6.2 Design Goals

The QMesh framework handles dynamic assignment of mobiesu® WMN gateways. We
pursue the following goals for this service:

e Satisfying application QoS requirements as closely asilples$n the presence of user mo-
bility.

Handling a variety of applications with different QoS regments and handoff penalties.

Tolerating infrequent gateway failures.

Maximizing the service capacity in the presence of load peak

Low-overhead, scalable, and fully distributed network agement.

No proprietary client protocol stack extensions.

6.3 QMesh Framework

In this section, we introduce the QMesh solution, which iempénts the design goals listed in
Section6.2 Section6.3.1outlines the QMesh network architecture, and describesnods
and parameters that must be deployed within a WMN to suppldiesh. Sectiorb.3.2introduces
QMesh’s gateway assignment protocol.

6.3.1 Network Architecture

QMesh provides mobile mesh users with access to real-tippkcapon services. The users per-
ceive the WMN as a standard 802.11 LAN, and are oblivious &nttesh’s internal multihop
structure. At all times, each user associates at the lird igith some mesh router within the radio
transmission range, called the user’s current AP. APs gdedvasic connectivity within the WMN,
including address resolution and packet delivery by MACredsl. As the user moves out of the
radio range of its current AP, it associates with a new AP és@rve connectivity. Upon initial con-
nection, QMesh associates each user with a single gateviagh wrovides it with the high-level
service (e.g., Internet access, SIP proxy, or game ser@adfesh may later migrate this user to a
new gateway when the QoS of the original one becomes pooiduelvility or congestion, while
considering an application-specific handoff penalty. QMgateway handoffs (macro-mobility)
are completely independent of the underlying WMN’s AP hdfsd@nicro-mobility).

Applications that seek optimal QoS must explicitly registéth QMesh to receive gateway
identity change notifications. This can be done through pipi@ation’s standard signaling proto-
col, e.g., SIP. For traditional applications that cannaiction correctly in the presence of gateway
handoffs, QMesh can be configured to either never re-ask@gateway, or to employ tunneling
through the initially assigned one (e.q20)]), at the cost of QoS degradation. Below, we focus on
the former kind of applications.

63

Method Semantics Example Implementation

monitor(u) return themonitoredQoS of usew’s gateway. \VoIP delay/jitter RTCP within the user’s flow
probe(g) query theprospectiveQoS of gateway; \OoIP delay/jitter RTCP over a test connection
cost(q) return thecumulativecost incurred by the QoS measure VoIP packet loss

Parameter Semantics

Tm Monitoring interval: the rate of runningionitor().

miny» Tmaz ~ The lower and upper bounds on the probing rate

(the actual intervat,, is set adaptively, depending on the QoS level).

The number of simultaneous random probes

(a largerP can offer better QoS at the cost of higher overhead).

Handoff threshold: the cumulative cost since the last ttimmsthat triggers a gateway handoff
(a smallerH means more aggressive handoffs).

QoS threshold for the probing rate control

(the probes are run more frequently if the QoS is poor).

~

[P o

Table 6.1:Methods and parameters deployed at the mesh nodes by applittans using QMesh.

Application Deployment: QMesh offers a generic framework for supporting multipl@laga-
tions. The needs of each application are captured bgeitgice cosivhich combines multiple
QoS-degrading factors. This cost is accumulated over tioe.example, the cost of a VoIP ap-
plication can be reflected as the number of dropped or lateyuackets. We distinguish between
continuouscosts, which stem from network distances and load peakspredimecosts incurred
upon gateway transitions. The gateway assignment algotiddances the tradeoff between these
two kinds of cost (Sectiof.3.2. Table6.1specifies the methods and parameters that applications
using QMesh deploy at the mesh nodes.

6.3.2 Gateway Assignment Protocol

QMesh manages gateway handoffs in a fully distributed @ashvy running the assignment pro-
tocol independently on each mesh router. Each AP routeogasf the protocol on behalf of its
users. Handoff management entails two kinds of decisionsdoh user, namelwhento request

a gateway handoff, and@hich gateway to transition to. The first decision is drivenrbgnitoring
the user’s recent QoS (e.g, by tracking the RTCP controlgtackithin a VolP media flow). The
second one is based @mobing multiple gateways (e.g., in VoIP, the AP-gateway delay can b
tested over a low-bandwidth dedicated connection; in amemgame, an AP can predict the aver-
age request delay by reading the response time statisiiosfiserver, through a remote invocation
of a standard application resource monitoring (ARM) A®3]). Monitoring and probing are per-
formed by each AP in the background, transparently to theilmabers. When an AP decides to
re-assign some user to a different gateway, it selects tbdhat offered the best QoS in the last
probe.

Figure6.lillustrates a handoff of a media session (e.g., VOIP). Thevgays provide an Internet
connection service. Each gateway is attached to a diffédRestubnet, and functions as a NAT
router. Initially, the mobile user is served by access paiRl, which associates it with gateway
GW1 (Figure6.1(a)). The second party resides in the public Internet andneconicates with the

64

G
Q QMesh

(a) Initial connection (b) After micro-mobility (c) After macro-mobility

Figure 6.1: Handoff of a VoIP session between two NAT gateways in QMesh.a] Initial
assignment to GW1 by access point AP1. (b) Micro-mobility taccess point AP2, in parallel
with monitoring and probing. (c) Macro-mobility to gateway GW3. GW?2 is congested and
consequently not selected.

user through GW1's IP address. The user then moves to acogsAP2 (Figure6.1(b)), which
forwards its packets to GW1 over mesh links. Consequemdypbacket latency is degraded. AP2
monitors the session’s quality, and in parallel probesways GW2 and GW3 for their prospective
Qo0S. At some point, AP2 decides to transfer the user from GWGW3. GW?2 is not selected
despite its proximity to AP2 because it is currently congéswith other users. AP2 sends a
notification with GW3’s IP address to the user, through thaiagtion’s natural signaling protocol
(e.g., SIP). In parallel, it re-routes the UDP media flow witthe mesh via the new gateway
(Figure6.1(c)). The user re-registers its new IP address with its pBefore the re-registration
is complete, the peer’s traffic continues to arrive to GWH esndropped there. This loss is the
handoff cost. (In an alternative implementation, GW1 caelehporarily duplicate the traffic to
GWa3 during the transition, in order to minimize the packedsle- e.g., 18]. In this case, the
handoff cost is the number of duplicate packets.)

A handoff management algorithm must balance the tradebffdsen two conflicting goals. On
the one hand, it would like to always assign each user to teedsteway, in order to minimize
continuous costs. On the other hand, one would like to deerége number of handoffs, in order to
reduce one-time costs. QMesh balances this tradeoff byalting the fraction of one-time costs
in the total cost. The algorithm is configured withandoff threshold.

QMesh monitors each user’s cumulative cost since the lastdth(not inclusive), and allows
a new transition only when this cost excedds For example, if the application-dependent hand-
off cost isC, then thetotal cost of each assignment period (including the handoff inethe) is
bounded byC' + H, and therefore, the fraction of the handoff cost within th@ltcost is bounded
by <.

QI'JF\% pseudocode of the QMesh assignment protocol appeaiguref6.2. Cost monitoring
(Lines 4-16) happens every, time units. Once the cumulative cost of usedenotedcost|u],
exceedsH, the user’'s gateway is re-assignecbst|u| is tracked by its current AP and sent to
the new one upon an AP handoff (Lines 17-19). A gateway’sifaiis manifested by a rapid

65

accumulation of cost of all users assigned to this gatewhigwtriggers a fast handoft.

The AP runs the gateway selection procedusetchoice() (Lines 30-45) once im, time
units, independently of cost monitoringextchoice() selects the next assignment flt local
users of the same application jointly. Thest variable holds the selected gateway'’s identity, and
is used upon subsequent handoffs of all users served by BiQMesh maintains the identity
of the second-best gateway, denotedt,, to ensure failover in the case that the current opti-
mal choice fails. This approach tolerates a single faill®veen two consecutive invocations of
nextchoice().

Waiting a long time between invocations results in usindestfoices, which translates to
suboptimal assignments in dynamic workloads. On the othadhrunningnextchoice() at a
high rate incurs undesirable control overhead. In orderatarite between the two, each AP sets
the value ofr, adaptively using the feedback on the quality of the current choicendf@oS below
a configured threshold, thenr, is exponentially reduced, otherwise, it is linearly incea. The
possible values of, are constrained by the lower and upper boufigs, and7;,,,., respectively.

If the current choice’s failure is suspected, immediatsetection is scheduled (Line 12).

Most QoS metrics are distance-sensitive, i.e., an optiratdwgay is likely to be near to the
user, and the primary reason for picking a remote gatewagtisork congestion around the close
ones. Therefore, QMesh always probes the nearest gatewgyaind probes further gateways
only if they can help dissipating the local load. More distgateways are probed only if moving
further continues to improve QoS (which happens in casegif ldad peaks). Remote gateways
are randomly load-balanced.

Assume that the distance between the AP and the closestayate network hops. The
algorithm works in phases. In phase 0, it probes in paralleP random candidates at distances
271D < d < 2'D from the AP. That is, the probed nodes are drawn from coniceriigs of
doubling width around the AP (the empty rings are skippedel34) — see Figuré.3for illustra-
tion. The number of rings is logarithmic with the networkmieter:), and hence, the worst-case
number of probes in a time unit l%}"ﬂ Note that in the first phase, only the nearest gateway is
probed. A gateway chosen muItipTgtimes is probed only ofi¢e algorithm stops either if the
result of a phase does not improve the result of the previbasgs, or if all the rings are sampled.

Discussion: Using a small number of probes is the key to the algorithrmedagality with the net-
work size. We later show through simulation (Sectto4) that P = 1 suffices for most workloads,
and the average number of probes in a time unit is very cloge%o far below the pessimistic
upper bound. One more remarkable property is that the ai1gn’s ‘fault-tolerance does not incur
any additional overhead since every invocation@ftchoice() performs at least two probes, i.e.,
the maintenance afest, comes for free.

We further empirically show that QMesh closely approximsatee unrealistic best-match as-
signment policy that possesses complete instantaneaursiafion about the network state. This is
in concert with Tasiulas’s work9p], which demonstrated that choosing the best candidate gmon
the current assignment and a handful of random choices isvasrful as the exhaustive search.

Note that QMesh’s distributed opportunistic assignmehtpcannot guarantee the best system-
wide cost at all times. For example, an AP in a congested aegastart choosing different gate-
ways, thus using longer routes and amplifying the netwoskl lm other regions. In some cases,

66

1

2:
3:

ecNa R

10:
11:
12:
13:

14

15:

ol

16

17:
18:
19:
20:
21:
22:
23:

24

25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:

. Initialization:
Tp < Tmaz
best « besty «— argminge distance(g)

: {Cost monitoring and handoff - per uger
: Every T, time do for user u
cost[u] «— costlu] + cost(monitor(u))
q[GWID[u]] «— monitor(u)
if cost[u] > H then
cost[u] < 0
if GWID[u| # best then
best <« bests
Tp < Tmin
GWID[u] « best

: upon AP handoff(u) do
send(cost[u]) to the new AP

: Every time slot do T,
{Gateway selection - shared for all us¢rs
nextchoice()
{Adjust the invocation perigd
if (q[best] < A) then
Tp «— max(7p/2, Tinin)
else
Tp «— min(7, + 1, Trnaz)

: procedure nextchoice()
G' — 0, D < minge distance(g)
while (G' # G) do
ring «— {g € G|§ < distance(g) < D}
if (ring # () then
choices « {P random choices from ring}
oldbest < best
results < probe(choices)|J{q[best]}
(best,besty) «— arg maxs results|c|
if best = oldbest then
return
D« 2D, G — G'Jring

Figure 6.2:The QMesh gateway assignment.

67

=

Figure 6.3:Selecting candidates for a probe in the QMesh gateway assigrent protocol. The
number of random probes in each phase i$> = 1. The selection process stops after probing
the third gateway that fails to provide a better QoS than the gcond one.

the network may even stabilize in an equilibrium point whigtiar from optimal. This problem
is common to many game-theoretic scenarios (e8§]).[However, Sectior.4 shows that under
the VoIP traffic, most of the congestion happens close to ébevepys, and hence, the route length
affects the network delay only weakly. Therefore, our setis close to a load-balancing game on
unrelated machines — a concept extensively studied by gwylcommunity. A load-balancing
game always converges to a Nash equilibrium poti#.[While in general this game admits
arbitrarily bad equilibria, its stochastically expectqukoating points are near-optima4]. Fur-
thermore, our simulations show that on average, QMesh datestretch the user-gateway routes
by much, and hence, the probability of the worst-case saenarsmall.

6.4 Evaluation

We empirically compare QMesh to alternative assignmernties, through extensive simulations.
Most of our simulation focus is on VoIP. We study the algarigi QoS and service capacity, as
well as their adaptiveness to mobility and load. SecBohlpresents our cost model for VoIP
QoS evaluation, and Secti@¥.2describes two policies that QMesh is compared to.

We first evaluate the protocols in a campus network with real unobility traces extracted
from a public dataset (Sectidh4.3. However, the scale of this network is around 600 APs, and
a limited capacity (150 users). Therefore, we turn to sitmdga projected citywide mesh (Sec-
tion 6.4.4 with 4096 APs, and address two spatial distributions of iealsers: a near-uniform
distribution, as induced by the widely adopted random wayg&WP) mobility model §6], and
a more realistic distribution with load peaks in residdradiiad business centers, produced by an
Alternating Weighted Waypoint (AWWP) model of urban traffinally (Sectior6.4.9, we show
the importance of service-specific handoff policies usimg@ample an application which is more
sensitive to handoffs (e.g., an online game).

68

6.4.1 VOoIP Traffic and Cost Model

We consider RTP-over-UDP VolIP flows generated by a standafd9=codec, i.e., a constant bit
rate (CBR) flow of 50 packets per second (20ms inter-pacKa/fleThe typical one-way delay
required to sustain a normal conversation quality is 108k |A VoIP packet is considered lost
if it fails to arrive to its destination within an admissildelay. We attribute most of the delay to
the mesh infrastructure, and set the admissible thresbh@@ ms, thus allowing a small slack for
additional delay incurred by the wired Internet.

We evaluate the VoIP QoS in terms of average packet loss mahich is the most dominant
component in Mean Opinion Score (MOS) — the standard VolRitguaetric [7]. MOS values
range from O to 5; values above 3.8 are considered acceptabiees above 4.0 are considered
good. For a given workload, we define the sendgapacityas the maximum number of users that
can be served within an acceptable MOS. In order to visualizesimple metric, we draw two
MOS levels, 4.0 (corresponding to 1% of loss) and 3.8 (2% s$)@n most of our performance
plots.

We focus on VoIP calls between mesh users and peers in thie tiglrnet. In this context, a
gateway handoff involves a change in the user’s externatltfPesss, and triggers application-level
signaling to re-route the traffic. This results in one secohdonnectivity loss, during which all
the VoIP packets are lost. Thus, the handoff cost is 50 (packets).

A VOoIP flow starts losing packets if its path to the currentbgigned gateway becomes long or
congested. Excessive packet delays are the primary reascorftinuous loss. Network delay is
incurred by accessing the various kinds of mesh links (Usekbone, and gateway connection),
and by queuing at the mesh routers. SecBidhextends on the models used by MeshSim. The
link-level delays are characterized by the MAC architegtuvhereas the queuing delays depend
on the VoIP traffic scheduling policy.

In order to allow for large-scale simulations with thousanflusers and access points, we de-
veloped a flow-level mesh network simulator, MeshSir#] [Packet-level simulation toolg]13]
cannot handle such a scale. MeshSim models the delayseaaciari/olP flows at each infrastruc-
ture node and link. It uses an accurate 802.11 link delay @k and implements two state-
of-the-art optimizations: (1) multiple antennae at eactienavith channels carefully allocated to
minimize cross-link interference, and (2) VoIP aggregafie.g., b8, 97], and also supported by
the 802.11n standard). We describe MeshSim in more det8gation6.5.

6.4.2 Assignment Policies

We compare QMesh to two simple assignment policies, Ngaatstvay and BestMatch. Near-
estGateway assigns the user to the gateway closest to rentP. That is, gateway handoffs
are tightly bound to AP transitions. The BestMatch policy isealistically impossible variant of
QMesh, which runs the greedy selection procedure upon eéMergandoff request, and assumes
instantaneous correct information. That is, it perform&xmaustive search of the best candidate
rather than random sampling of one, and moreover never teesrgormation.

QMesh and BestMatch are instantiated with cumulative pdoks as the QoS cost function.
The handoff threshold is set #8 = 10 packets. This relatively small value is chosen because the

69

Packet loss (%)

gateway

Figure 6.4:The Dartmouth network map and gateway placement.

651 3

! & NearestNeighbor - NearestNeighbor & 0% TCP flows
L] -@- BestMatch 6| -©@ - BestMatch -@-10% TCP flows °
i —4— QMesh il —9—QMesh ——20% TCP flows J
: ’
1 ,I
i A
i

o

25

IS
8 0o
~

o«

©
&
Packet loss (%)

w

Average Hops to Gateway
N
&

®

50 75 100 125 150 10 25 50 75 100 125 150
Load (number of users) Load (number of users)

(a) Loss ratio scalability: (b) User-gateway distance adaptation (c) Loss ratio scalability:

100 125 150 10 25

10 25 50 75
Load (number of users)

BestMatch and QMesh vs NearestGatewayby BestMatch and QMesh QMesh in the presence of TCP flows

Figure 6.5:Scalability evaluation of the gateway assignment algoritims in an unplanned cam-
pus WMN, with topology and user mobility traces drawn from the Dartmouth CRAWDAD
public dataset.

handoff costis low(' = 50 packets), and given the user speeds, the loss of 10 packetsfigcient
indication for changing the assignment. QMesh uses a simglee in each phase aéxtchoice()
(i.e., P = 1). It adaptively adjusts the interval between invocatiohaextchoice() within the
range[T,,:, = lsec, T,,.. = 15sec]. The QoS threshold for accelerating the probe& is 50 ms.

6.4.3 Campus Scale Simulation (CRAWDAD)

Our first case study is mobile VoIP performance in an unpldmesh deployed within a large
neighborhood or a campus. We draw the network topology aadnibbile users’ motion traces
from CRAWDAD [2], a community resource for archiving wireless data at Dattth college,

thus avoiding the need to speculate about the simulatiopisti The original Dartmouth network
is a single-hop WLAN. The network includes over 600 irreglylplaced access points. While in
a WLAN, APs are connected via a wired infrastructure, in owiM/setting, they communicate

70

through wireless interfaces. All routers use omnidirewicantennas with a transmission radius
of 133m — a minimal value for which the network remains come@c We place the Internet
gateways in a way that minimizes the mean distance (in thebeumf hops) from each AP to
the nearest gateway. For this purpose, the network is ipakid into 5 clusters using a K-Means
algorithm [66], and within each cluster, the router closest to the cetitagi selected to serve as a
gateway. Figuré.4illustrates the WMN'’s topology (the campus map is duedp. [The APs are
depicted as dark dots, and the selected gateways as tsamigirea dot in the middle.

We employ the 2001-2003 movement data9€} fhat contains the mobility traces of more
than 6200 users, collected over a period of many months. Eack contains a sequence of
(timestamp, AP id) pairs that describe the history of the'ssessociations with wireless APs. The
majority of users are either static or quasi-static (oarzaiy hopping between close APs once in
a few minutes) most of the time. Their locations are heavégéd toward the faculty buildings.

We explore the scalability of the assignment policies ohwietwork load, as follows. For each
data pointZ, we build a set of scenarios in whidhusers generate a continuous VoIP stream, as
follows. We extract from the trace a set of time intervalbatleast 10 minutes long, in which the
number of online users is exactly Since the database is very large, each set contains hindred
of intervals for each.. We simulate NearestGateway, BestMatch and QMesh on tbestiat 50
intervals selected uniformly at random from each set, amiame the loss rates among the runs.
Figure6.5@a) depicts the results. The loss of BestMatch and QMeshinsnaaceptable as long
as the number of users does not exceed 125 (the service tyapddierefore, in the absence of
mobility, BestMatch and QMesh efficiently balance the castsirred by network distances and
gateway loads. Only under high loads, some differentidtiemveen the two appears, because the
latter searches for the candidate more carefully and ledaienmediately. On the other hand,
NearestGateway cannot handle even 25 users, due to itditypwabiexploit multiple gateways.
QMesh’s adaptive nature becomes even more pronounced dsdydlse dependency between the
congestion and the user-gateway distances (Fi§ui®)). For small loads, QMesh and Nearest-
Gateway produce an identical average distance of 2.1, drileigh loads, QMesh stretches the
routes to 4.9 to optimize the assignment.

Following this, we examine QMesh’s scalability in the praseof concurrent TCP flows gen-
erated by traditional data applications. We repeat theipusvexperiment, for a varying number
of TCP connections (0% to 20% of the number of users, with ¢s¢ nunning VoIP flows). All
TCP flows are handled in a traditional way, namely, each oftlsanitially assigned to the closest
gateway, and never reassigned again. In order to prevanastm of the VoIP traffic by TCP
flows, we allocate the latter with at most 50% of availabl@sraission bandwidth, and schedule
their packets at a lower priority. Thus, the VoIP capacityhaf shared links decreases, but the QoS
of the admitted flows is guarantee. Fig&(c) shows that the average loss ratio increases with
the fraction of TCP flows, but the impact is not dramatic witthie admissible load range.

6.4.4 City Scale Simulation

Our ultimate goal is studying the performance of QMesh inry \erge-scale WMN with highly
mobile users. For this, we turn to simulating a citywide migstt exceeds the campus deployment
by an order of magnitude in the spanned area and the populatio

71

We consider an urban geography of size 8 km?. There are five population areas — four
residential neighborhoods and a commercial downtown. Wgations within each area follow a
Gaussian distribution around the area’s center with vadanwhich is called the areasffective
radius The downtown’s effective radius is 1km, and its center omated with the center of the
grid at coordinates (4km, 4km). Each neighborhood’s effeatadius is 500m, and their centers
are located at coordinates (1km,1km), (1km, 7km), (7km, lkand (7km, 7km). Figuré.6(a)
depicts this topology. Areas are depicted as circles, atelhggs as small triangles. The Internet
access is provided through a regular grid of 64 gatewaysgesiibkm apart. The wireless backbone
is a fine grid of 4096 mesh routers, spaced 125m apart. Theniasion radius is 125m.

Our simulation employs two stationary distributions of nelisers, each generated by a dif-
ferent mobility model:

1. A near-uniform distribution, produced by the populardam waypoint model (RWP)Xp].
The node uniformly chooses the destination and moves toivaté constant spead= 20
m/s (an urban driving speed).

2. A more realistic distribution that biases the users towiae population areas (e.g., neigh-
borhoods or downtown), produced by the projected altangatieighted waypoint (AWWP)
model. At any given time, a mobile node is either stationargame area, or moving on a
highway between two areas at a constant speed®0 m/s. The popularity of different areas
varies during the day.

The Alternating Weighted Waypoint Model

AWWP is one plausible way to create a clustered user digtabult is inspired in part by§9],
which explored preferences in choosing destinations oégeihn mobility patterns. The nodes’
transitions between the areas are governed by a Markovgsdlcat switches its transition proba-
bility matrix every 12 hours. The system is modeled by twoestgiates, each of which is a Markov
chain. Each state in a chain corresponds to a single are& fabability matrix designates the
users’ preferred locations at a certain time of day. The mgpwviode’s destination point within
the target area is a random variable, drawn from the Gaudsarbution described above. In the
morning, most users drive to the downtown and stay therenguhie working hours, whereas in
the evening, most users drive back to their neighborhoodtaydat home during the night. Direct
transitions between the neighborhoods are not allowed.

Figure6.6(b) depicts this random process. We denote the downtowi,gnd neighborhood
1 by N;. The transition probabilities are (symmetric for gll

Morning/day Evening/night

DN;,D 0.9 0.1
PD,N; 0.025 0.225
PD.D 0.9 0.1
PN;,N; 0.1 0.9
DPNi,N; 0 0

72

A A A A A
@ A A A A

(a) City topology (b) Alternating Weighted Waypoint

Figure 6.6:Urban Simulation Settings: (a) The city’s topology (downtavn and four neighbor-
hoods) and the gateway grid. (b) The random process behind 6hAWWP mobility model.

The stationary distributions of the Markov chains are:

Morning/day Evening/night
™ 0.9 0.1
TN; 0.025 0.225

A mobile user’s behavior is deterministic between transitimes. Upon a self-transition, a
node remains at its current location for a period.olin case of a transition of the user to another
area, it picks a destination point from the distributionundd by the destination area, and moves
to it with a speed ob. For simplicity, we assume that all users wait for the same tand move
with the same speed. We set= 4 min. Note that the waiting time is equal to the driving time
between the centers of the downtown and neighborhood ahedisis setting, the motion can be
approximated as a discrete-time Markov chain, in which iime tslot length is 4 min. All state
transitions (including the probability matrix switch) hggm on slot boundaries. During a single
slot, the user either moves between two areas, or remaingeinfcthem.

In each super-state (day or night), the users are mostipiséay, except in a short time after
the transition, when they mostly move to their new prefeemehs. Upon switching the super-state,
the convergence to a new matrix’s stationary distributsoshiort (3-4 time slots). Therefore, the 15
min following the super-state transition are consideré@asition period after which the system
enters astableperiod.

We also experimented with richer models, e.g., non-sttaighbvement trajectories, and con-
strained motion within the population areas. However, field almost the same results because
the most important factor is the load peaks. Hence, our sitimns focus on the presented simple
model.

Numerical Results

We compare the loss rates and overhead of QMesh to BestMaddiearestGateway, for the near-
uniform and skewed stationary distributions produced leyRdVP and AWWP mobility models,

73

respectively. Every data point is averaged over 20 runsAPOWP, we separately study four dif-
ferent times of day: morning (neighborhoods-to-downtovavement), day (mostly staying in the
downtown), evening (downtown-to-neighborhoods movementd night (mostly staying in the
neighborhoods). Day and night are stable periods, mormdge&ening are transition. The morn-
ing and evening scenarios are simulated for 15 min (theitrangeriod time, see Sectidh4.4).
The day and night scenarios are insensitive to the measuatgraeod; we used 30 min periods for
them. The RWP experiments were initialized with the unifalistribution of users, and preserved
it over time P6]. Each experiment simulated 15 min of user motion.

We first study the the dependency between load and loss fahtee algorithms. Figuré.7
depicts their behavior for near-uniform distribution iced by the RWP mobility pattern, with
loads ranging from 200 to 2000 users. At all times, Nearest@sy succeeds in accommodating
each user at the closest gateway, because no cell's loadd=sds capacity. All loss is due to
handoffs, and depends only on the user’s speed, and hemgkepitstant for all loads. The Best-
Match and QMesh policies incur identical costs, since upbaraloff, the local gateway is almost
always the best choice that cannot be improved by furthdsipgo They improve the loss over
NearestGatewayby sustaining a user’s association withatisway beyond the grid cell's bound-
aries, as long as the QoS permits. The maximal admissibtegaseway distance diminishes with
load, and hence, handoffs become more frequent, thus caBestMatch’s and QMesh'’s loss.

The shortcomings of NearestGateway become evident as Wy thgpsame experiment for a
more realistic biased distribution of load generated byAWANVP model. We separately explore
the morning scenario featuring a transition of load fromgbkephery to the center (Figutega)),
and the day scenario that reflects a stationary congestitve idowntown (Figuré.8(c)). In both
cases, NearestGateway does not scale beyond 300 userstduregbility to resolve the congestion
in the downtown area to the other gateways. On the other I@vésh can accommodate 600 users
— just slightly below the baseline BestMatch. Fig6r&b) differentiates the part of handoffs in
the packet loss (by depicting the average handoff freqUemntyhe morning scenario. QMesh’s
frequency is low and congestion-adaptive (growing slowithwoad), while NearestGateway'’s is
high and load-insensitive.

In the next experiments, we continue using the more chabengWWP workload. Fig-
ure 6.9(a) depicts the distribution of costs achieved by Nearesw@ay, BestMatch and QMesh
by the time of day, for a load of 600 users. Note that Neardsi@Gey's loss is even higher dur-
ing the day than in the morning, due to the stationary comyest the downtown. The price of
this congestion is higher than the cost of excessive hasdoffing the morning transition. Since
the measured transition period also captures some regtnagin the steady-state area for most
nodes, NearestGateway’s loss in the morning is higher thaine evening, when these areas are
not congested.

The same disadvantage of NearestGateway is observed whexawene the relationship be-
tween a user’s mobility level (the fraction of time in whidetuser changes its location) and its
loss rate. Figuré.9(b) and Figureés.9(c) depict the distribution of loss among the mostly stadign
users (below 20% mobility) and the mostly mobile ones (akiz#) achieved by NearestGate-
way and QMesh, respectively. (Note that a small fraction sdra remains highly mobile even
in the stable regime, since transitions between populatorers are not instantaneous). QMesh

74

Packet loss (%)

MOS 3.8 -l NearestNeighbor
2F mm e m -@ -BestMatch

——QMesh

15r
- -+--2--%-82--52-14

0 L L L L L L L L L L
[200 400 600 800 1000 1200 1400 1600 1800 2000

Load (number of users)

Packet loss (%)

Figure 6.7:Scalability evaluation of the gateway assignment algoritins in a citywide WMN,
for a near-uniform distribution (RWP model).

- NearestNeighbor -&NearestNeighbor -&-NearestNeighbor
-@ - BestMatch -@ - BestMatch -@ - BestMatch L
F | —4—QMesh 0.61- | ——QMesh 6 | —9—QMesh ‘
.
0

Average handoffs/minute
Packet loss (%)
-

P S

0

100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 (] 100 200 300 400 500 600 700
Load (number of users) Load (number of users) Load (number of users)

(a) Loss ratio, transition period (b) Handoff frequency, transition period (c) Loss ratio, stable state

Figure 6.8:Scalability evaluation for a clustered distribution (AWWP model): (a) Loss ratio
— morning. (b) Handoff frequency (average number of handof§ per minute) — morning. (c)
Loss ratio — day.

has the desirable property that the stationary users exqerismaller loss rates than the mobile
ones. That is, most of the mobile users’ packet loss stems ffiendoffs (which do not happen to
the stationary users), while the congestion-orientedi®ssnimized for both categories thanks to
opportunistic assignment. In contrast, under Nearest@gtestationary users in congested areas
suffer from continuous loss, which exceeds the occasicaadibff-related loss incurred to mobile
users.

We study the distribution of load on mesh links, in order towglthat under the QMesh as-
signment, the network operates close to its optimal equilib point. We focus or20% most
congested grid cells in a stable state (day), for 600 useiguré-6.10 depicts the dependency
between a link’s distance from a gateway and the average ewuaib/olP flows assigned to this
link. Note that most of the load is concentrated on WMN linkgaent to gateways (QMesh and
BestMatch perform very close). VoIP packet aggregatioctiSe6.5) further reduces the number
of physical flows that contend for the same link. Therefolieh@ps of any user-to-gateway route
are unlikely to be congested, except for the last one, bag Liser-gateway routes do not create

75

Packet loss (%)
w - @

MOS 4.0 I 0-20% mobility
[_120-100% mobility K It [—_]20-100% mobility

I 0-20% mobility

>
o
®

Packet loss (%)
°
>

Packet loss (%)
N

°

=

H
‘
:
‘
‘
:
'z
3
8
7
!
.
g
-
.
|
H —
I

(a) QMesh vs (b) NearestGateway: (c) QMesh:
NearestGateway and BestMatch stationary vs mobile users stationary vs mobile users

Figure 6.9:Average loss ratio distribution by the time of day, for the a kewed workload of 600
users (AWWP mobility model): (a) Comparison between 3 assignent policies, (b,c) Com-
parison between the mostly stationary (below 20% mobilityand the mostly mobile users, for
two separate policies.

new bottlenecks in the system. Hence, the distributed tiparaf QMesh is close to that of selfish
load-balancing, which is expected to stabilize in nearroalt configurations44).

Following this, we examine QMesh’s control overhead — therage number of probes per
minute performed by each AP. We focus on the day scenario tigemetwork congestion is most
heavy. The overhead depends on the number of probes pei@ekswell as on the probing rate.
Our measurements show that for most values of load, it is g@méw applynextchoice() once
in 15 seconds to achieve an acceptable loss ratio. The a&veragber of probes applied upon
gateway selection never exceeds 2.5, as opposed to theticabtimit of the logarithm of the
network size. Moreover, for most values of the load, the nemdb probes is almost exactly 2 —
the minimal possible value. Figufell(a) summarizes these results in a single plot, which shows
that the overhead is very small for most workloads.

Finally, we study the potential QoS benefit of increasingrtbmber of random probes made
by QMesh. We compare two instantiations of the algorithnmgigt = 1 and P = 2, in the day
scenario. Figuré.11(b) shows that increasing does not bring any performance impact for light
loads (below 400), and has a minor impact for heavy loads. ebh@r, QMesh partially masks
the disadvantage of applying a single random probe by addptadjusting the probing interval
7,. Note that at a load of 600, QMesh with = 1 starts increasing its probing rate due to QoS
degradation, which reduces the gap between it and QMeshRwtP.

6.4.5 Service-Specific Handoff Policies

In all the above experiments, QMesh used a very low handagstiold, and migrated each user
almost immediately as the user’s delay became inadmissg@#éing a low thresholdH{ = 10)
was correct because the handoff cost was also ©w=(50), and hence, there was no benefit in
delaying the new assignment. However, this policy is noessarily true if the handoff cost is
very high, e.g., in an online game, in which a handoff ent#sibstantial state transfer. Consider,

76

I 1 hop to gateway
a5 [2 hops to gateway
[—_13 hops to gateway

Flows per link
N
bl

5l

0

BestMatch QMesh
Algorithm

Figure 6.10: Load distribution on mesh links in congested areas: most ofite congestion
happens close to the gateways.

180
70 257 [4 QMesh (P=1) i Il Aggressive (H=10)
—@—QMesh (P=2) [160k [Conservative (H=10000)
'
'
'

60 MOS 3.8

Average probes/minute
Packet loss(%)
Cost (virtual units/sec)

i I ﬂ H I ﬂ
9 D: E Night

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Morning ay vening
Load (number of users) Load (number of users) Time of Day

(a) Scalability of the number of probes (b) Impact of P on the loss rate (c) Impact of H on the loss rate

Figure 6.11:Studying the effect of QMesh'’s tuning parameters: (a) Scalaility of the number
of probes per minute with load, (b) Impact of increasing the umber of simultaneous probes
P. (c) Impact of handoff threshold for an application with a high handoff cost (50000):
aggressive policy f = 10) vs. conservative policy f = 10000).

for example, the same traffic model as described in Seétibr, the same continuous cost (1 lost
packet = 1 unit), and the handoff cost@f = 50000 units. We provide this example for insight
only, and do not claim that a realistic online game’s tragfist model is used.

Figure 6.11(c) illustrates the comparison between two instances of §Mmrametrized by
H =10 andH = 10000, respectively, under a light load (400 users). The secosidite, which
is much more conservative in applying costly handoffs, iastly achieves a better cost with all
mobility patterns. Hence, tuning the handoff thresholddocadance with the application-specific
handoff cost is crucial for achieving a good overall cost.

77

6.5 Delay Modeling in MeshSim

We briefly describe the delay models used by MeshSim, a fleelmulator we developed to
provide network scalability beyond that of packet-levetgiation tools 13, 4].

MAC Architecture and Link Delays: We assume that each router is equipped with distinct
interfaces for user access (802.11b) and backbone (8QZ.ademunication. These interfaces use
different wireless bands, and hence, the access and bdd¢kaféia flows do not interfere. 802.11a
is chosen for its abundance of orthogonal wireless charih®2)swhich are exploited to minimize
interference among the mesh links (this is also a commoriipesio commercial WMNs10]). A
router employs two cards for communicating within the meshe for egress traffic and the other
for ingress traffic. This facilitates a parallel transmissand reception at the backbone, and hence,
a simultaneous upstream and downstream forwarding. Thiesagnterface is operated at a fixed
wireless channel. Whenever a router needs to communicétesaime neighbor, it switches its
egress interface to the channel of this neighbor’s ingrass. ddence, a single ingress interface is
shared by the links emerging from the router’s neighbors.

The low-degree topologies utilized by our experimémtsd a substantial number of available
channels allow performing ingress channel assignment iayathat no pair of routers within two
hops from each other share the same ingress channel. Tieeriéie only kind of MAC contention
at the backbone arises when two nodes simultaneously tiatesthe same neighbor. That is, we
assume that no interference exists between two backbdteithout a common endpoint.

Since at each mesh node, all the incoming backbone linke gharsame ingress interface,
the delay on each outgoing link depends on the cumulativé dmathis link’s target. The mesh
forwards each flow along the shortest path between its AP atelvgy. Therefore, a particular
assignment of users to gateways determines the load onie&chnd hence, the total link delay
incurred to each user. We use the model by Tickoo and Sikdatd compute the expected latency
of traversing a shared 802.11 link (either access or baakbon

VoIP Aggregation and Queueing Delays:We assume that VoIP flow aggregation(e.§8][also
adopted by 802.11n) is employed in order to overcome thectiggdanitation that is inherent to
wireless VoIP, namely, a high overhead of transmitting $impatkets over the 802.11 medium.
The VoIP traffic at mesh routers is handled through a VolRi$ipescheduling policy. A packet
that needs to be forwarded over an egress link is placed t@tieue of this link. The link’s
scheduler sets the time for transmitting the next outgoakpt. At this time, the queued packets
are aggregated into a super-packet, which is transmittedtbe medium as a single frame. Upon
arrival to the neighbor, the super-packet is de-multipdexad the individual packets are handled
independently.

By rate-limiting the super-packet generation processstieduler controls the capacity/delay
tradeoff at the wireless link. The scheduler transmits glsipacket in a fixed-length time slot,
which can be implemented, e.g., through a simple tokenebaa#fic shaping. With this policy,
if the arrival rate exceeds the transmission rate, the pa&ke queued on average for a half-slot
time, and otherwise, they are forwarded immediately.

1 A sparse subnetwork of the Dartmouth WMN (Sectfo4.3 or a grid (Sectior6.4.4

78

In the chosen delay moded4], a link can sustain an inter-packet delay of 20ms for at most
10 independent flows without dropping packets. For the bawc&binks, we take a conservative
approach, and rate-limit each egress queue to one packeiris. ISince the maximal node degree
is 4, at most 8 (aggregated) packets contend for each shayess link in 20ms, thus approximat-
ing the behavior of eight concurrent VoIP flows. The averageuging time is therefore 5ms for a
fully backlogged egress queue.

The maximal capacity of the backbone links is constrainetheynumber of RTP packets that
can be multiplexed into a single super-packet. The size dRBER packet with a G.729 voice
payload is 60 bytes. Assuming the super-packet size of 1@ bwithout RTP header compres-
sion [58], the number of voice packets that can be multiplexed intopespacket is 25. Since a
single egress queue schedules transmissions each 10ros thei packet arrival rate in a single
flow), its capacity i2 x 25 = 50. Hence, the capacity of a shared ingress link is 50 = 200
flows (4.7 Mbps bandwidth).

Finally, the gateway connection introduces its own delayictv depends on the wired link’s
capacity. Since a typical WMN is expected to use an availatgepensive wired infrastructure,
assume the use of the ADSL technology, in which the uplinkétandwidth bottleneck. The
fastest available ADSL2 uplink rate today is 3.5 Mbps. Weiassthat it supports 120 flows (2.75
Mbps effective bandwidth), and employ the M/M/1 model folagecalculation.

79

Chapter 7

QMesh Implementation

Wireless mesh networks, or WMNSs, is a rapidly maturing tedbgy for providing inexpensive
Internet access to residential areas with limited wiredheativity [16]. While initially designed
for small-scale installations (e.g., isolated neighbod®), WMNs are now envisioned to provide
citywide access and beyond . Modern mesh networks are expected to handle mobile applic
tions with diverse QoS requirements like VoIP, VoD, and ganibg].

WMN users access the Internet through a multihop backbofizexf wireless routers. Each
external user associates at all times with a single routdrgiovides it with access to the mesh,
which is called the users access point, or AP. Some of thersutalled gateways, are connected
to the wired infrastructure. A common practice in smalllsdAMNs is always assigning each
user to the nearest gateway (e.48]). In this approach, gateway handoffs (macro-mobilityg ar
tightly coupled with link-layer AP handoffs (micro-moli). This solution cannot adapt to load
peaks within the mesh, thus limiting its capacity.

This shortcoming can be resolved by assignsagneusers from congested areas to distant
gateways, hence avoiding congested paths, providing aroire@ quality of service (QoS), and
eventually increasing the WMN’s capacity. Intelligent@aay assignment policies must balance
between the impact of link loads and network distances —herotvords, performoad-distance
balancing[38]. Note that gateway selection is a traffic engineering goliather than a routing
extension. It can work on top of any routing protocol withie \WMN.

We designed and implemented QMesh (Secfial) — a prototype QoS mesh network that
features seamless mobility support and load-distancenbialg. QMesh’s external users perform
a minimum of standard configurations, without installingliéidnal software at their side. The
QMesh infrastructure is based on inexpensive Windows XRtdps equipped with wireless cards,
which makes it an attractive choice for office environmefitse routing software deployed on the
infrastructure nodes is a small-footprint device driver tfte best of our knowledge, this is the
first WMN solution implemented in the Win32 kernel space). €8t is managed by a centralized
controller, which intelligently associates wireless gsefith access points and gateways. The
QMesh code (driver and management software) and docurrmntie available for download
at [8].

QMesh was deployed on a testbed of 7 mesh nodes, including&teways. It supports a
variety of real-life applications, including VoIP and vmstreaming. Performance measurements

80

(Section7.2) validate our approach to mobility and user assignment.

7.1 QMesh Architecture

The QMesh routing software is implemented on top of the Meshr@ctivity Layer (MCL) — an
ad-hoc routing and link quality measurement software pgeldeveloped at Microsoft Research
that features the LQSR routing protoc8| p1]. Architecturally, the MCL code is a Win32 NDIS
driver that elegantly plugs into the host networking staetneen the network and link layers. It
abstracts the WMN’s multihop nature from upper-layer safeey which handles the entire mesh as
a single L2 segment. MCL requires installing its code onetiwork nodes. QMesh extends it with
an access infrastructure functionality, namely, with MAfZlgess resolution and unicast/broadcast
traffic forwarding for non-LQSR users.

The QMesh controller is a user-space software that runs eteated mesh router, and com-
municates with the other routers through LQSR extensiansollects the wireless user location
information from the access points, and associates everyN\Wibkr with a single AP and a sin-
gle gateway. The controller can be instantiated with mldtgssignment policies, encompassing
nearest-neighbor assignment, perfect load-balanciryiaore sophisticated algorithms that con-
sider distance and load together (e.8g]]. Fig. 7.1illustrates the QMesh architecture.

7.1.1 Seamless Mobility

In QMesh, the mobile user’s current AP functions as its defRuouter. The user is forced to route
all its traffic via this AP (a sandbox subnet) by setting thkerst mask to 255.255.255.255. The
two nodes communicate directly, through a 802.11 ad-hdc [ffhe alternative of implementing
APs as transparent bridges operating in the 802.11 infretstre mode was infeasible, due to a
shortcoming of most Win32 wireless card drivers that do npp®rt the promiscuous mode — the
same problem was reported Bl).

The assignment mechanism works as follows. As a mobile m#gally associates with the
mesh or moves away from its original AP, it gets discoveredbg or more APs that intercept
the user’s broadcast control traffic - e.g., periodical DHE&uests. These APs enter the user’s
MAC address into theilocal user cacheor LUC, which they periodically send to the controller.
The latter computes the (possibly new) assignment, andmisstes it in the network. All WMN
nodes store the user-AP associations giabal user cacheor GUC, to maintain address resolu-
tion within the mesh infrastructure segment. We explorede3hods of communicating the AP
association back to the mobile node, seamlessly to the user:

Gratuitous ARP: originally suggested in1[8]. All mobile users perceive the WMN as an om-
nipresent virtual access point. Its IP address is pre-corddyby the user. Upon the initial associ-
ation or handoff, the prospective access point maniputatesapping of this virtual IP address to
a MAC address, through publishing its own link-layer addri@san unsolicited address resolution
(ARP) reply (Figure7.2(a)). The downside of this approach is that ARP is a low-lgretocol
that cannot be secured (e.g., encrypted).

81

-7 - '
/
;
; QMesh
B Controller
/
\\
. 9
\ >
\
S
IP Router

2
=
@ =]

Sandbox LAN segment
802.11 ad-hoc
WMN LAN segment
MCL LQSR

Figure 7.1: The QMesh network architecture: users, mesh routers, and aentralized con-
troller.

ICMP Router Discovery Protocol (IRDP): manipulating the default router’s IP address it-
self [50]. The mesh AP assigned to the user publishes its own netvdalteas as the user’s default
gateway, using a specific ICMP packet. IRDP can be enabled\ahdows computer through a

dedicated DHCP request.

DHCP Reconfigure: manipulation of the default gateway’s IP address througlyreachic up-
date triggered by the DHCP servé&5]. This option is not supported by the Windows XP host
networking stack, and we chose not to implement it.

Unlike the previous implementations (e.gl8]), QMesh does not employ any reliable mes-
saging infrastructure for forwarding in-flight packetsidgrthe AP transition. Instead, we opt for
a simple and lower-latency kernel-level implementationr @erformance measurements validate
this approach.

7.2 Performance Evaluation

We first study the performance impact of access point haadadffollows. We measure the fluctu-
ations of jitter in a G.711 VoIP stream emerging from a mobdee upon two AP transitions. The
jitter values stabilize in the acceptable range (below 2D wwthin 200-400 ms (Figur&.2(b)),
thus supporting the findings in previous WMN implementagi{i8, 58].

The next experiment demonstrates the importance of balgrioads and distances in user
assignment. We measure the Mean Opinion Score (MOS) — thdasth VoIP quality metric
that combines the loss rate, jitter and delay experiencethéylow’s packetsq]. MOS values
range from 0 to 5; values above 4.0 are assumed good. We eomsgitting in which up to five
wireless users are closer to one access point, which is gateway, than to any other mesh node.
Therefore, assigning them to this nearest neighbor (thg sedepicted in Figuré.3(a)) results in
overloading the access link, and hence, in a degraded MOShedsther hand, routing some flows
through a more distant AP/gateway pair reduces the comgesit the expense of an increased

82

AP2
AP1 MAC: bb.bb.b2
MAC: bb.bb.b1

\\ Default router (virtual): SV oy
N 192.168.1.1 N v/
N q
N
Se o
GUeT = ~———————— "
(LQSR)

(a) Handoff via Gratuitous ARP

Jitter (ms)

35
30 «~ Handoffs -

(200-400 ms)
251
20k Accentableiter | W
15
100 5000 10000

Time (ms)

(b) Impact of handoff (VoIP jitter)

Figure 7.2:AP handoff management in QMesh: (a) Gratuitous ARP-based hadoff mecha-

nism. (b) Fluctuations of VoIP jitter caused by AP handoffs.

NE .
=

(a) Nearest-Neighbor assignment

[l L D-balancing
[_INearestNeighbor,

&
N

&
N

Acceptable MOS

IS

Mean Opinion Score (MOS)
w
©

w
)

w
3

6 7

2 3 4 5
Load (number of users)

(b) Load-distance balanced assignment (c) Impact of load-distance balancing

Figure 7.3:Comparison of the (a) nearest-neighbor and (b) load-distace balancing assign-
ment policies, for the VoIP application, in terms of the MeanOpinion Score (MOS) metric.

number of hops (Figuré.3(b)). The measurements depicted in Figar&c) show that the second
option can sustain all five flows within an acceptable qualitlyile the first one can handle only

three.

83

Chapter 8

Conclusions and Future Work

We explored a distributed infrastructure for QoS provigigrto mobile users and groups thereof,
through multiple geographically dispersed service poifitis Mobility and Group Management
Architecture (aka MAGMA) can prove highly valuable to margxtrgeneration mobile network-
ing technologies, ranging from wireless mesh networks (Vyidr broadband Internet access to
IP multimedia subsystems (IMS) for beyond-3G convergetlilzellP networks. In this context,
the key challenges wemdaptivenessi.e., handling dynamic phenomena such as user mobility,
flash crowds etc), andcalability (i.e., coping with millions of users through thousands af se
vice points). We focused on vital algorithmic aspects of fhamework, as well as on prototype
implementations of our algorithms in real systems.

8.1 Conclusions

Chapter3 studied a problem of service point assignment to mobilesuseuser groups in a dis-
tributed infrastructure with multiple service points. $tproblem will naturally arise in several
emerging practical environments, in which the cost of &tidgoplication handoffs is significant.
We have provided a rigorous theoretical study, which inefudompetitive online algorithms and
a lower bound on the competitive ratio of deterministic aidpons. Following this, we studied
the performance of the proposed algorithms when appliedh iarban WMN and in a wide-area
chatroom service. We gave practical algorithms that apprate the optimal performance more
closely, and scale well with the network size. Finally, wendastrated that a very limited, and
even noisy, prediction of the user’s future motion allowsaastruct algorithms with near-optimal
performance.

Chapter5 introduced a novel load-distance balancingB) problem, which is important for
delay-sensitive service access networks with multiplgessr In such settings, the service delay
consists of a network delay, which depends on network distaand a congestion delay, which
arises from server load. The problem seeks to minimize therman service delay among all
users. Thex—LDB extension of this problem is achieve a desiredpproximation of the opti-
mal solution. We presented two scalable distributed atlgor$ for «—LDB, Tree andRipple,
which compute a load-distance-balanced assignment withl laformation. We studiel@ree’s

84

andRipple’s practical performance in a large-scale WMN, and showatittie convergence times
and communication requirements of these algorithms atedmatiable and workload-adaptive, i.e.,
they depend on the skew of congestion within the network hadize of congested areas, rather
than the network size. Both algorithms are greatly supeaqreviously known solutionsTree
employs a fixed hierarchy among the servers, whekepgle requires no pre-defined infrastruc-
ture, scales better, and consistently achieves a lower cost

Chaptel6 introduced QMesh, a novel scalable solution for dynamigassent of mobile users
to gateways in a large-scale WMN, which jointly takes intosideration factors like load peaks,
mobility, and application-specific handoff costs. QMesin ¢e& instantiated with application-
specific handoff policies. We studied QMesh through extensimulation in different settings
of a wide-area urban WMN. Our results show that QMesh scabdk (aonstant to logarithmic
overhead) and adapts to network loads. It satisfies applic&oS requirements for service ca-
pacities significantly exceeding those of traditional piels.

Finally, Chapter7 presented a prototype implementation of QMesh within the3&ikernel
that features (1) native support of standard 802.11 clig¢B)stransparent mobility, and (3) plat-
form for intelligent user-to-gateway assignment. Perfange evaluation conducted over a real
testbed demonstrates the feasibility of QMesh’s approatlamdoffs, as well as the importance of
balancing distances and loads in assigning users to WMNvgsie

8.2 Future Work

The work on MAGMA can be extended to a variety of new reseanattions.

8.2.1 Dynamic Infrastructure Deployment

MAGMA explored a fixed service infrastructure, e.g., stAM®&N gateways. However, many
new applications require extending this perception. FangXe, rescue force applications require
rapidly deploying an infrastructure for supporting moliéams. In this context, the speed of
self-configuration (including the services) is criticalhél deployed infrastructure can be either
externally deployed, or use part of the users as superndtesnew model implies a host of novel
service placement and selection problems, which we brikéict below.

LD-balanced Clustering Problems: Consider, e.g., the following extension of the load-dis&an
balancing problem (Chapt&). In the previously studied model, server locations werevim a-
priori —e.g., located on a grid, or selected via clusteriagdal on distances between users (Chapter
6). This model can be extended jmintly perform service placement and assignment — a novel
variation of the well-studied K-center, K-median and K-mealustering problems/g. The
key algorithmic issue is whether a joint service placemeult @asignment can improve upon the
applying these steps separately (the latter approach vegaet] e.g., by47)).

For example, the LD-balanced-center problem is defined as follows. Considarsersl/ =
{ui,...,u,} ina(metric) space, in which(u;, u;) stands for a network distance betwegrand
u;. A service k-partitioris defined as a set of pai{$U, s1), . . ., (Uy, sx) }, such that (1}; € U;

85

forall s, 2) U;U; = 0 forall i # j, and (3)J,,-, U; = U. In this context, uses; is selected
to serve all users ity; (including itself). o

Consider a non-decreasing congestion funciiofN — R*, which is uniform among all users.
A partition isoptimalif it minimizes

max [5(|U:l) + max D(u, 5;)]
(note that the use af differentiates between this problem and the traditiddatenter problem).
Using theL; and L, norms instead of.., leads to similar definitions of LD-balanced-median
and K-means problems. An initial result indicates that an optiohastering is not necessarily
spatially convex39|.

Local and Mobile LD-balanced Clustering: Similarly to Chapters, we are looking for scal-
able local distributed solutions for LD-balanced clustgrproblems. Recently, multiple works
addressed distributed mobile clustering without congndethe impact of load, e.g.6p, 71]).

A particularly interesting direction is proposimgobility-adaptivesolutions, which trade clus-
tering perturbation for the amount of user motion. Int@ty a system designer could expect that
a small variation in user locations will result in small cgas incurred to clustering. However, this
expectation cannot be fulfilled if the system is close to itximal capacity, even when the server
locations are known in advance.

Relaxing the requirement for selecting exadtlgenters (i.e., allowing up tol +)k servers)
can be critical for maintaining a smooth LD-balanced clusteeven in the presence of mobility.
In this context, we plan to capitalize on recent results ftbencomputational geometry community.
For example, Har-Peled’s work on clustering motiéd][demonstrates how to achieve a relaxed
k-clustering of points whose movement is described by patyiabfunctions, under traditional
definitions. This paper, as well as other works (e 8f])] uses acoresettechnique to improve the
scalability of computation-intensive clustering algbnits. Instead of running an algorithm on the
entire input, it selects its small representative subsdied coreset, and computes an approximate
solution of the original problem using it. We propose to explthe applicability of coresets to LD-
balanced clustering. Yet another technique that can bewed from computational geometry for
efficient mobile center management is kinetic data strestiKDS) p0]. KDS allow maintaining
the mobile center’s trajectory and speed (also termed d# flign) when the mobile nodes’ flight
plans are either known in advance, or change at discretstime

Churn-Resilient Service Placement: Spontaneous node joins and crashes, also celtleth, are

a commonplace phenomenon in dynamic distributed systerostr&st to mobility, which leads
to predictable changes in workload, churn (i.e., flash ce)vedn be very hecticGossipproto-
cols [63, 84, an efficient mechanism for disseminating data in a dynaratevork, can be applied
to spread the locally monitored churn indications. The goapproach can be of independent
value even for one-shot problems like distributed loadaglise balancing, in which it can be used
instead of the clustering approach adopted in Chdpter

86

8.2.2 New Approaches to Old Problems

Analysis of Greedy LD-Balanced Assignment: Chapter5 presented a 2-approximation algo-
rithm, BFlow, for the load-distance balancing problemBFlow , which is based on multiple
maximum flow computations in a bipartite user-server grdgats, a large (although polynomial)
time complexity. We examined the following alternative hstic, which is both simple and fast:
traverse a random permutation of users, and greedily assigmuser to the server that minimizes
this user’s delay. Empirical experimentation showed thigthieuristic consistently produced better
results thaBFlow , for all the studied workloads. A rigorous analysis is intpat for understand-
ing this behavior. Currently, we can only analyze two exeearases — a uniform workload, and a
peaky workload (but not the combination of the two).

Analysis of the QMesh Assignment Policy:We would like to to theoretically justify the heuristic
distributed probing policy employed by QMesh (Chaggmwhich combines randomized probing
at growing distances with greedy server choices. It wouldrésting to analyze this policy from
the game-theoretic view, demonstrate its price of anarBloAj and price of stability (PoS) met-
rics [89], and confirm the empirical observation that QMesh always/eaes to a stable assign-
ment.

87

Bibliography

[1]

[2]

[3]
[4]

[5]

[6]
[7]
[8]

[9]
[10]
[11]
[12]

[13]
[14]
[15]
[16]

Cisco Airespace Wireless Control System.
http://www.cisco.com/univercd/cc/td/doc/product/wir eless/wcs/index.htm

CRAWDAD: a Community Resource for Archiving Wireless t@aat Dartmouth.
http://www.crawdad.cs.dartmouth.edu

Dartmouth Mapshttp://www.dartmouth.edu/ ~maps.

JiST - Java in Simulation Time/SWANS - Scalable Ad hoc W&tk Simulator.
http://jist.ece.cornell.edu

Mesh Networking: Software Artifacts and Support.
http://research.microsoft.com/mesh

Minimum Exact Coverhttp://www.nada.kth.se/ ~viggo/wwwcompendium/node147.html
MOS Calculator.http://davidwall.com/MOSCalc.htm

QMesh - a Mesh Network with QoS Support.
http://comnet.technion.ac.il/magma/software/gmesh/i ndex.htm .

Riverbed Technologyhttp://www.riverbed.com
Strix Systemshttp://www.strixsystems.com
The MAGMA Research Projechttp://comnet.technion.ac.il/magma

The MeshSim Simulator and Traces.
http://comnet.technion.ac.il/ ~ebortnik/software/meshsim.tar.gz

The Network Simulator — ns-attp://www.isi.edu/nsnam/ns

The WiMax Forum.http://wimaxforum.org

Tropos Networkshttp://www.tropos.com

I. Akylidiz, X. Wang, and W. Wang. Wireless Mesh Netwesrla SurveyComputer Networks
Journal (Elsevier)Mar. 2005.

88

http://www.cisco.com/univercd/cc/td/doc/product/wireless/wcs/index.htm
http://www.crawdad.cs.dartmouth.edu
http://www.dartmouth.edu/~maps
http://jist.ece.cornell.edu
http://research.microsoft.com/mesh
http://www.nada.kth.se/~viggo/wwwcompendium/node147.html
http://davidwall.com/MOSCalc.htm
http://comnet.technion.ac.il/magma/software/qmesh/index.htm
http://www.riverbed.com
http://www.strixsystems.com
http://comnet.technion.ac.il/magma
http://comnet.technion.ac.il/~ebortnik/software/meshsim.tar.gz
http://www.isi.edu/nsnam/ns
http://wimaxforum.org
http://www.tropos.com

[17] M. Alicherry, R. Bhatia, and L. E. Li. Joint Channel Agament and Routing for Throughput
Optimization in Multi-Radio Wireless Mesh Network8CM MobiCom 2005.

[18] Y. Amir, C. Danilov, M. Hilsdale, R. Musaloiu-Elefterand N. Rivera. Fast Handoff for
Seamless Wireless Mesh NetworkeCM MobiSysOct. 2006.

[19] Y. Amir, C. Danilov, M. Hilsdale, R. Musaloiu-Elefterand N. Rivera. Fast Handoff for
Seamless Wireless Mesh NetworkdobiSys 2006.

[20] Y. Amir, C. Danilov, R. Musaloiu-Elefteri, and N. Rivar An Inter-domain Routing Protocol
for Multi-homed Wireless Mesh Network$EEE WoWMoM 2007.

[21] B. Awerbuch. On the Complexity of Network Synchronipat JACM 32:804-823, Oct.
1985.

[22] A. Bar-Noy and I. Kessler. Tracking Mobile Users in Wass Communication Networks.
IEEE INFOCOM pages 1232-1239, 1993.

[23] A. Bar-Noy, I. Kessler, and M. Sidi. Mobile Users: to Ugdé or not to Update? IEEE
INFOCOM, pages 570-576, 1994.

[24] A. Bar-Noy and I. Mansour. Competitive On-line Paginga$egies for Mobile Users under
Delay ConstraintsACM PODG pages 256265, 2004.

[25] A. Barak, S. Guday, and R. Wheeler. The MOSIX Distrilslit@perating System, Load
Balancing for UNIX. Lecture Notes in Computer Science, Springer Verlag, vo] 6923.

[26] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polyloga@ompetitive Algorithm for
Metrical Task SystemsACM STOC pages 711-719, 1997.

[27] Y. Bejerano and I. Cidon. An Anchor Chain Scheme for IPdioy ManagementWireless
Networks pages 409-420, 2003.

[28] Y. Bejerano, I. Cidon, and J. Naor. Dynamic Session Mgmaent for Static and Mobile
Users: a Competitive On-Line Algorithmic Approach (Pajt ACM DIAL-M, 2000.

[29] Y. Bejerano and S.-J. Han. Cell Breathing Technique®falancing the Access Point Load
in Wireless LANs.IEEE Infocom 2006.

[30] S. Bespamyatnikh, B.Bhattacharya, D.Kirkpatrickgddai.Segal. Mobile Facility Location.
ACM Workshop on Foundations of Mobile Computing (DIALRDO00.

[31] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff. Yacity Radius — Capturing the Locality
of Distributed ComputationsACM PODGC 2006.

[32] S. Biswas and R. Morris. ExXOR: Opportunistic Multi-HBwuting for Wireless Networks.
ACM SIGCOMM 2005.

89

[33] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysi€ambridge
University Press, 1998.

[34] A. Borodin, N. Linial, and M. Saks. An Optimal On-Line gdrithms for Metrical Task
System.JACM, 39:745-763, 1992.

[35] E. Bortnikov. Dynamic Service Management in Infrasture-Based Mobile Networks.
Technical report, Technion, EE Faculty, Jan. 2006.

[36] E. Bortnikov, I. Cidon, and I. Keidar. Nomadic Serviceifts. IEEE Infocom 2006.

[37] E. Bortnikov, I. Cidon, and I. Keidar. Nomadic ServicaAAgnmentlEEE TMC 6(8), Aug.
2007.

[38] E. Bortnikov, I. Cidon, and I. Keidar. Scalable LoadsEince Balancing. limternational
Symposium on Distributed Computing (DIS20)07.

[39] E. Bortnikov, I. Cidon, and I. Keidar. Scalable Reah Gateway Assignment in Mobile
Mesh Networks ACM CoNEXT Dec. 2007.

[40] E. Bortnikov, I. Cidon, I. Keidar, T. Kol, and A. VaismanPoster Abstract: A QoS Mesh
Network with Mobility Support. ACM SIGMOBILE MC2RJan. 2008.

[41] J. Camp, J. Robinson, C. Steger, and E. Knightly. Measent Driven Deployment of a
Two-Tier Urban Mesh Access NetworRCM MobiSysOct. 2006.

[42] J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amzacdlity Aware Dynamic Load
Management form Massively Multiplayer GaméX?oPP, 2005.

[43] M.-H. Chiu and M. A. Bassiouni. Predictive Schemes fandoff Prioritization in Cellular
Networks Based on Mobile PositionintEEE JSAC18(3):510-522, 2000.

[44] C. Chung, K., L. K. Pruhs, and A. Roth. The Price of StatlaAnarchy.SAGT 2008.

[45] W. Chung and S. Lee. Improving Performance of HMIPv6ks with Adaptive MAP
Selection SchemdEICE Transactions on Communicatiqris90-B(4), 2007.

[46] R. Cohen and G. Nakibli. On the Computational Complezihd Effectiveness of N-hub
Shortest-Path RoutindEEE Infocom 2004.

[47] R. Cohen and G. Nakibli. A Traffic Engineering Approadn Placement and Selection of
Network ServiceslEEE Infocom 2007.

[48] T.H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsThe MIT Press,
2001.

[49] S.K. Das, R.Jayaram, and S. K. Sen. An Optimistic QuaditService Provisioning Scheme
for Cellular Networks.IEEE ICDCS 1997.

90

[50] S. Deering. ICMP Router Discovery Messages. Intedraft, IETF, June 1991. rfc1256.txt
http://lwww.ietf.org/rfc/rfc1256.txt

[51] R. Draves, J. Padhye, and B. Zill. Routing in Multi-radMulti-hop Wireless Mesh Net-
works. ACM MobiCom Sept. 2004.

[52] L. Du, J.Bigham, and L. Cuthbert. A Bubble Oscillationgarithm for Distributed Geo-
graphic Load Balancing in Mobile NetworkdEEEE Infocom 2004.

[53] A.D. et al. Epidemic algorithms for replicated databasanagemenaCM PODGC 1987.

[54] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergefinoee to Nash Equilibrium in
Load Balancing ACM Transactions on Algorithm8(3), Aug. 2007.

[55] A. Fiat and M. Mendel. Better Algorithms for Unfair M&tal Task Systems and Applica-
tions. SIAM J. Computing(6):1403—-1422, 2003.

[56] M. J. Freedman, K. Lakshminaraynan, and D. MaiziereASI3: Anycast for Any Service.
ACM NSD] 2006. To appear.

[57] R. G. Gallagher. A Minimum Delay Routing Algorithm UgrDistributed Computation.
IEEE ToG 25:73-84, 1977.

[58] S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu,|Bmailov, S. Hong, and S. Das.
Performance Optimizations for VoIP Services in Mesh NeksalSAG 24:2147-2158, Nov.
2006.

[59] J. Gao, L. Gubias, J. Hershberger, L. Zhang, and A. Zhiscriete Mobile CentersACM
Symp. on Computational Geomet2p01.

[60] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. ZDiscrete mobile centers. In
Symposium on Computational Geomepgges 188-196, 2001.

[61] B. Ghosh, F.T.Leighton, B.Maggs, S.Muthukrishnan,REaxton, R. Rajaraman, A. Richa,
R. Tarjan, and D. Zuckerman. Tight Analyses of Two Local Ldsdancing Algorithms.
ACM STOG 1995.

[62] R. A. Guerin and A. Orda. QoS Routing in Networks withdonarate Information: Theory
and Algorithms.IEEE/ACM ToN 1999.

[63] K. M. Hanna, N. N. Nandini, and B. N. Levine. Evaluatioha Novel Two-Step Server
Selection MetriclEEE ICNP, 2001.

[64] S. Har-Peled. Clustering MotionDiscrete and Computational Geometi31(4):545-565,
2004.

[65] W. Hsu, K. Merchant, H. Shu, C. Hsu, and A. Helmy. WeighWaypoint Mobility Model
and its Impact on Ad Hoc NetworkédCM SIGMOBILE MC2R9:59-63, 2005.

91

http://www.ietf.org/rfc/rfc1256.txt

[66] A. K. Jain and R. C. Dube®lgorithms for Clustering DataPrentice-Hall, 1988.

[67] S.Jamin, C. Jin, D. Raz, and Y. Shavitt. Constrained®iiPlacement on the InternéEEE
Infocom 2001.

[68] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walkimg tTight Rope: Responsive yet
Stable Traffic EngineeringACM SIGCOMM 2005.

[69] R. Karrer, A. Sabharwal, and E. Knightly. Enabling Lergcale Wireless Broadband: The
Case for TAPsProceedings of HotNet2003.

[70] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhoftaycal Approximation Schemes for
Ad Hoc and Sensor Network&\CM DIALM-POMG 2005.

[71] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Fault-Tai¢ Clustering in Ad Hoc and Sensor
Networks. (68), 2006.

[72] S. Kutten and D. Peleg. Fault-Local Distributed Mergdid. Algorithms 1999.

[73] N. Lavi, I. Cidon, and |.Keidar. MaGMA: Mobility and Gup Management Architecture
for Real-Time Collaborative ApplicationdViley J. on Wireless Communication and Mobile
Computing (WCMQ)5:749-772, Nov. 2005.

[74] K.-W. Lee, B.-J. Ko, and S. Calo. Adaptive Server Setectfor Large Scale Interactive
Online GamesACM Int'l Workshop on Network and Operating Systems Sugdpoiigital
Audio and Video (NOSSDAW004.

[75] C.R. Lin and J.-S. Liu. QoS Routing in Ad Hoc Wireless Wetks. IEEE JSAC17, 1999.

[76] H. Luo, R. Ramjee, P. Sinha, L. Li, and S. Lu. UCAN: a Urdfi€ellular and Ad-Hoc
Network Architecture ACM MobiCom Oct. 2001.

[77] A. Meyerson. Online Facility Location.|EEE Symposium on Foundations of Computer
Science (FOCSR001.

[78] P. B. Mirchandani and R. L. Francidiscrete Location TheoryJohn Wiley & Sons Inc.,
1990.

[79] T. Moscibroda and R. Wattenhoffer. Facility LocatioDistributed Approximation.ACM
PODC, 2005.

[80] J. Moy. OSPF Version 2. Internet-draft, IETF, Apr. 1998 rfc2328.txt
http://wwwe.ietf.org/rfc/rfc2328.txt .

[81] M. Naor and L. Stockmeyer. What can be Computed Locallk€M Symp. on Theory of
Computing 1993.

92

http://www.ietf.org/rfc/rfc2328.txt

[82] R. Niedermeyer, K. Reinhardt, and P. Sanders. Towamds@l Locality in Mesh Indexings.
Fudamentals of Computation Theory, LNCS Springer-Veldad9:364—-375, 1997.

[83] J. Orlin. A Faster Strongly Polynomial Minimum Cost #l@Ilgorithm. ACM STOC 1988.

[84] P. Eugster and R. Guerraoui and S. Handurukande andu2n¢tsov and A.-M. Kermarrec.
Lightweight Probabilistic BroadcasACM TOCS(21), 2003.

[85] PK Agarwal and S. Har-Peled and KR Varadarajan. Geam&pproximation via Coresets
— Survey. InCombinatorial and Computational GeometiMSRI publication, 2005.

[86] G. P. Pollini. Trends in Handover DesigiicEE Communications Magazing4, 1996.

[87] L. Qiu, V.N.Padmanabham, and G.M.Voelker. On PlaceméhVeb Server ReplicadEEE
Infocom 2001.

[88] R. Ramjee, D. Towsley, and R. Nagarajan. On Optimal @dtission Control in Cellular
Networks.Wireless Networks3(1):29-41, Jan. 1997.

[89] T. Roughgarden and E. Tardos. How Bad is Selfish Routiig#nal of the ACM2002.

[90] L. Song, D. Kotz, R. Jain, and X. He. Evaluating LocatPredictors with Extensive Wi-Fi
Mobility Data. IEEE INFOCOM 2004.

[91] G. T. SSA. IP Multimedia Subsystem (IMS). Stage 2 (Reted), 3GPP, 2005.

[92] L. Tasiulas. Linear Complexity Algorithm for Maximumhfoughput in Radio Networks and
Input Queued Switche$sEEE Infocom 1998.

[93] The Open Group. Application Response Management - ARM.
http://www.opengroup.org/tech/management/arm

[94] O. Tickoo and B. Sikdar. Queueing Analysis and Delayidtion in IEEE 802.11 Random
Access MAC Based Wireless Network&EE Infocom 2004.

[95] Y. T'Joens, C. Hublet, and P. D. Shrijver. DHCP reconfe@axtension. Internet-draft, IETF,
Dec. 2001. rfc3203.tx¢http://www.ietf.org/rfc/rfc3203.txt

[96] J. Yoon, M. Liu, and B. Noble. Sound Mobility Model&CM MobiCom 2003.

[97] S. Yun, H. Kim, and |. Kang. Squeezing 100+ VoIP Calls oti802.11b WLANSs. IEEE
WoWMoM 2006.

[98] W. T. Zaumen, S. Vutukury, and J. Garcia-Luna-Acevesad-Balanced Anycast Routing in
Computer NetworkslSCGC 2000.

93

http://www.opengroup.org/tech/management/arm
http://www.ietf.org/rfc/rfc3203.txt

	Abstract
	Notations and Abbreviations
	Introduction and Background
	Novelty and Related Work

	Methodology
	Nomadic Service Assignment
	Related Work
	System Model
	An Optimal Offline Algorithm
	Online Server Assignment
	A Lower Bound of k on the Competitive Ratio
	DTrack - a 2k-Competitive Online Algorithm
	CTrack - an Efficient Online Algorithm
	Opportunistic Heuristics

	Case Study: Mobile Users in a WMN
	Motion-Aware Heuristics

	Case Study: Wide-area Chatroom Service
	Analysis
	A Competitive Analysis of DTrack-RR
	A Competitive Analysis of CTrack-RR
	A Competitive Analysis of DTrack-B
	Non-Competitiveness of Opportunistic Algorithms

	The Load-Distance Balancing Problem
	Related Work
	Problem Definition
	Min-Max Load-Distance Balancing
	Computational Hardness
	BFlow -- a 2-Approximation Algorithm
	Optimal Assignment on a Line with Euclidean Distances

	Min-Average Load-Distance Balancing
	The Optimal Algorithm
	Improving the Running Time on a Line with Euclidean Distances

	Scalable Load-Distance Balancing
	Related Work
	Definitions and System Model
	Distributed LD-Balanced Assignment
	Tree - a Simple Distributed Algorithm
	Ripple - an Adaptive Distributed Algorithm

	Numerical Evaluation
	Analysis and Extensions
	Correctness and Performance Analysis of Tree
	Correctness and Performance Analysis of Ripple
	Handling a Dynamic Workload

	QMesh
	Related Work
	Design Goals
	QMesh Framework
	Network Architecture
	Gateway Assignment Protocol

	Evaluation
	VoIP Traffic and Cost Model
	Assignment Policies
	Campus Scale Simulation (CRAWDAD)
	City Scale Simulation
	Service-Specific Handoff Policies

	Delay Modeling in MeshSim

	QMesh Implementation
	QMesh Architecture
	Seamless Mobility

	Performance Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work
	Dynamic Infrastructure Deployment
	New Approaches to Old Problems

