
410 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 4. APRIL 1987

Failsafe End-to-End Protocols i n Computer
Networks with Changing Topology

ISRAEL CIDON AND RAPHAEL ROhl

Absfrucf-End-to-end protocols in computer networks in which the
topology changes with time are investigated. A protocol that delivers all
packets ordered, without duplication, and which uses a window, is
presented. using .a precise model of the network correctness of the
protocol is proven. Ttie use of the window for flow control is also
addressed.

I. INTRODUCTION

E ND-TO-END communication is clearly the object of any
communication network. Naturally, therefore, end-to-end

protocols have been the subject of research for a long time.
While many protocols achieve their goals by using timeouts
[l] , [2]. Finn, in an original paper [3], demonstrated the
existence of end-to-end protocols without making use of
timeouts.

Essentially, a failsafe end-to-end protocol is one that should
deliver, all packets in the correct order and without duplica-
tion. In addition, flow control‘and error recovery must also be
addressed. In his paper, Finn presented a ptotocol which
properly handlCd .ordering and duplication avoidance in a
network,in which a resynch procedure operates.

In this paper, we extend that protocol, to. accommodate
windows, i.e:, allow mores than one packet to be in transit
between source. and destination nodes, allow to control the
flow, and hadale erroneous packets. All this is done while
using bounded counters.

The paper is structured in the ,following way. We first
introduce a model for a network with changing topology,, the
concept of resynch procedures, and the assumptions .underly-
ing the operation of end-to-edd protocols. These are based on
previous work [4], [3]. A windowed end-to-end protocol is
then presented and its correctness proven. The use of windows
for flow, control is also included, as is the special case of
circuit-based networks.

11. THE MODEL

We cobsider a network composed of autonomous processors
referred to as nodes interconnected by bidirectional links. The
processors exchange packetized information over these links.
We distinguish between two types of networks-fixed topol-
ogy networks and ‘changing topology networks. A detailed
definition of the model of such networks is given in 141, we
give here a. brief summary only.

In, a fixed tppology network all packets sent from a node to
its neighbor are assumed to arrive correctly in the order sent.
and within an arbitrary, but finite, delay. Nodes can distin-

Paper approved by the Editor for Computer Communications Theory of the
IEEE Communicatibns Society. Manuscript received August 10, 1984;
revised July 10, 1486.

1. Cidon was,.with the Department of Electrical Engineeridg, Technion,
Israel Institute of Technology. He is now with the IBM T. J. Watson Research
Center, Yorktown Heights, N,Y 10598.

R. Rom i s with the Department of Electrical Engineering, Technion, Israel
Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 8613144.

guish among packets received on different links and process
packets in the order of arrival.

The major difference between fixed and changing topology
networks is the states of the links. In a changing topology
network links can be either active in which case packets sent
over it arrive properly, or inactive in which case packets do
not arrive. Nodes do not necessarily know the state of the link,
but rather mark it as operative or inoperative according to
whether the node assumes the link to be active or inactive,
respectively. It is also assumed that nodes become aware of a
change in a link state within a finite time of the change.

We assume that a communication resynch procedure (CRP)
operates in the network. A CRP is a mechanism to clean the
network from all packets that entered the network before some
topological change took place. The CRP described here is a
simplification of the resynch procedure defined in [3]. Every
node maintains a cycle number (CN) that identifies the most
recent resynch cycle in which the node participated. Nodes
increment their CN when they bedome aware of a topological
change ,in an adjacent link or when special messages origin,at-
ing at neighbors whose CN is higher are received. Messages
belonging to previous cycles are not accepted. The CRP
assures that a packet making it. to the destination has seen the
same CN in all nodes it traversed.

Our starting point is the end-to-end protocol presented in
[3]. This protocol, which we refer to as the ETE protocol,
proceeds as follows. The source node i sends sequenced data
packets P(i , j , h) to destination node j (with n being the
sequence number), and the destination node j responds with
acknowledgments ACK(j, i, nj. Node i will not send the n +
1st message until ,the nth message has been acknowledged in
the current resynch cycle. Each recipient immediately ac-
knowledges every data packet received as well as sends an
ACK after every resynch cycle to indicate the last data packet
received.

Two additional assumptions must be made with regard ,to
this protocol. First, we assume that nodes do not fail with
complete loss of memory-the last packet sent from the node
must be saved. The second assumption regards routing. We
assume that a packet sent from node s towards destination d
traverses the route s = ko, k, , * . . , k,, in which either k,, = d ,
or the packet is rejected at k,,, or sent from it over an inactive
link. This means that the packet either arrived at its intended
destination or is lost due to topological changes. No other
constraints are imposed on the selection of nodes in the route.

III. A WINDOWED ETE PROTOCOL

We describe here a failsafe end-to-end protocol which
allows more than one packet to be “in the pipe” between
every pair of communicating nodes. We refer to this as the
windowed end-to-end protocol (W.ETE). In the description
that follows, we refer to a single pair of source ‘destination
nodes.

Let us assume that N packets are allowed to be ,on their way
at any time. To maintain fail safety we require both the source
and the destination nodes to be able to store N packets. In the
source this buffer is required because following a topological
change all these packets may have to be retransmitted. In the

0090-6778/87/0400-0410$01 .OO 0 1987 IEEE

CIDON AND ROM: FAILSAFE END-TO-END PROTOCOLS

destination it is required because packets may arrive unor-
dered, but have to be delivered in the correct order. Since
more than a single packet may be in transit, packets must carry
a sequence number. To maintain a finite field for thesg,G
numbers, cyclic numbers are used.

We number the buffer cells from 1 to N so that at the
receiver the packet in cell number 1 is the next one to be
delivered, whereas at the sender cell number 1 contains the
earliest unacknowledged packet. Nodes maintain cyclic
counters to relate messages to cells. The cyclical counters are
updated upon delivery of packets at the receiver or receipt of
acknowledgments at the sender.

In a more precise way, let the source and destination nodes
maintain cyclical counters n, (mod N + 1) and nd (mod N +
I) , respectively. The source s sends to destination d data
packets of the form P(s , d, n) where n is a cyclical sequence
number (CSN). The destination responds with acknowledg-
ment packets of the form ACK(d, s, n) .

Data packets generated at the source are put into the buffer
in the next available cell. This packet is assigned a CSN
equaling n, O K and sent immediately towards the destination
(K is the cell number into which the packet is put, and 0
refers to addition mod N + 1). Upon receipt of ACK(d, s, n)
the source marks the packet in cell number n 8 n, as
acknowledged. The packet in cell number 1 is now examined.
Should it be marked as acknowledged, it is discarded, n, is
incremented by 1, and all packets from higher numbered cells
are advanced one cell. This is repeated until the packet in cell
number 1 is unmarked.

At the receiver, an arriving packet P(s, d, n) is deposited in
cell number n 8 nd and an ACK(d, s, n) is sent. Cell number
1 is now examined. Should it be full, its contents is delivered,
nd is incremented by 1, and all packets in higher numbered
cells are advanced one cell. This process is repeated until cell
number 1 is empty.

To adapt the protocol to a changing topology environment,
we make use of the Cycle Number changes of the CRP
operating in the network. Every time a CN is incremented the
receiver discards all the packets in his buffer and sends an
ACK(d, s, nd). The sender waits for this acknowledgment and
upon its arrival treats it as an ACK for all packets in the nd 0
n, lowest cells (note that if n, = nd no packet is actually
acknowledged). All unacknowledged packets are then retrans-
mitted.

Note that the protocol can be made slightly more efficient by
using a selective repeat retransmission scheme rather than the
go-back-N scheme which is used, i.e., at the beginning of a
new cycle the receiver does not discard any packet and sends
an ACK carrying not just the value of his counter but also an
indicator (N bits long) for all packets in his buffer. The
sender, of course, retransmits only the unacknowledged
packets.

A. Formal Specification

to destination d
Following are the variables at the source node s with respect

MEM(n) The buffer that contains for each n = 1, 2 , . . ,
N: DP(n)-a place for a data packet and,
AP(n)-a place for an acknowledgment.

n, A cyclical counter (cyclically points to the bottom of

ad A Boolean variable indicating receipt of an ACK in the
the buffer)

current resynch cycle.

Variables at the destination node d with respect to source s:

41 1

Packets sent and received:

P(s, d, n) A data packet sent from source node s to
destination d carrying a (cyclic) sequence
number n .

ACK(d, s, n) An acknowledgment packet sent from
destination node d to source s carrying a
(cyclic) sequence number n .

In addition, we make use of the notation

and assume that K is always updated.
The reading and writing from/to the buffer is handled by

MEMPOP and MEMPUSH which are defined in the following
way:

MEMPUSH(X, m) D P (m) + P or AP(rn)+- 1 depending
on whether X is a data or acknowl-
edgment packet, respectively.

MEMPOP For t: = 1 to N- 1 MEM(t)+MEM(t+ 1)
MEM(N) +- 0
n,+nsO1

Algorithm for Source Node s:

1 .a MEMPUSH(P,K)
1.b send P(s,d,n,OK)

2) event: A(d,s,n) and aj=O
2.a MEMPUSH(A, nOn,)
2.b while AP(1) = 1 MEMPOP

3) event: A(d,s,n) and ad= 1
3.a for t: = 1 to nOn, MEMPUSH(A,t)
3.b while A P (l) = 1 MEMPOP
3.c for t: = 1 to K send P(s,d,n,Ot) from DP(t)

1) event: New packet P , ad= 0, and K I N

3.d ad: = 0
4) event Cycle Number (CN) changes:

4.a for t: = 1 to K AP(t): = O
4.b ad: = 1

Algorithm for Destination Node d:

1 .a MEMPUSH(P,n8nd)
1 .b send ACK(d,s,n)
1.c while MEM(1)f 0 do MEMPOP

2) event Cycle Number (CN) changes:
2.a for t: = 1 to N MEM(t): = 0
2.b send ACK(d,s,nd)

1) event: P(s,d,n)

B. Correctness of the ETE Protocol

To prove the correctness of the above protocol we make use
of properties of the CRP that underlies the operation of the
ETE protocol. Two lemmas with regard to the CRP are
quoted; their proof follows directly from lemmas proved in [4]
and will not be repeated here.

Lemma 1: Given a network and a finite sequence of
topological changes terminating at time t*. A finite time after
t* for every connected pair of nodes k and j, = Rj (where
Ri is the CN of node i) .

Lemma 2: If a packet sent at time t from node i along the
path i = io. i,, * . , i,, where in is the first node in which it is
not accepted, then within a finite time o f t i increments its CN.

In the following lemmas we assume a WETE protocol that
operates with unbounded sequence numbers rather than with
cyclic numbers and an infinite number of buffer cells (meaning
that all arithmetic is regular and not done mod N + 1). Three
different numbers are distinguished:

MEM(n) This is the buffer that contains for each n = 1, Sequence numbers (SN)-absolute, nondecreasing num-

nd A cyclical counter (cyclically points to the bottom of Cyclical sequence numbers (CSN) which were previously
2 , * e , N a place for a data packet. bers for ordering data packets.

the buffer). defined and which obey CSN = SN mod N + 1

412 IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. COM-35, NO. 4. APRIL 1987

Cycle numbers (CN) which are the numbers associated
with every CRP cycle.

Lemma 3: For every CN no two identical packets are sent.
Proof: By the definition of the protocol the sender does not

send any packet more than once for any given CRP cycle, and
since every packet receives a different SN they are all
distinguishable.

The same applies to the receiver since acknowledgments are
sent only once for each received packet and are distinguishable
by their SN. The first acknowledgment sent carries an SN for a
packet that will not be resent and therefore will not be
reacknowledged. The CRP property assures that packets of the
wrong CN are rejected. 0

Lemma 4: Let Ad be the (noncyclic) counter at the
destination. For every packet P(s, d, A)

A d + N L A > A d

Proof: Since the receiver never acknowledged packets
number Ad + 1 , by the rules of the protocol the sender could
not have sent any packet whose SN is greater than Ad + N.

It remains to be shown that no packet can arrive in the
current cycle with an SN less then or equal to Ad. Assume Ad
2 A, meaning that packet P(s, d, A) has been previously
delivered-either with the current CRP cycle or in a previous
one. The first case contradicts Lemma 3 : The second case
implies that at the beginning of the current cycle Ad 2 A,
implying that in the current CRP cycle all data packets carry
SN’s greater than A, contradicting our assumption. 0

Lemma 5: Let A, be the (noncyclic) counter at the source.
For every arriving acknowledgment ACK(d, s, A)

A , + N 1 A 2 A s

Proof: Clearly, A 5 As + N since no more than N packets
may be sent without being acknowledged.

Assume A < A, and consider the data packet .P(s, d, A) . If
this packet was sent in the current CRP cycle, it was already
acknowledged in contradiction to Lemma 3.

Consider the case in which P(s, d, A) was not sent in the
current CRP cycle. Two subcases must be treated depending
on whether this is or is not the first ACK received in the
current cycle. The first subcase means that the ACK comes in
response to a data packet P(s, d, A) which contradicts the
assumption. The second subcase means that the receiver has
previously acknowledged all packets up to As which implies A

Lemma 6: If a packet P(s, d, A) arrives at the destination at
which time its counter is Ad then all packets with SN between
Ad and A have been transmitted in the current CRP cycle.

Proof: At the beginning of the cycle an ACK(s, d, m) with
m 5 Ad has been received at the source. The lemma holds
since the source sent all the packets in their sequential order
starting at m . 0

Theorem l:, Given a network with a finite sequence of
topological changes in which a CRP operates. Let the WETE
protocol operate in conjunction with the CRP. Under these
conditions all packets are delivered, in the correct order, and
without duplicates.

Proof: Lemmas 4 and 5 prove the equivalence between
regular and modulo N + 1 arithmetic.

We prove the rest by induction on the CRP cycles and on the
sequence numbers within every cycle. Lemma 1 assures that
for every packet that is not accepted a new CRP cycle is started
causing an ACK to be sent which when arriving at the source
causes all as yet undelivered packets to be retransmitted. By
Lemma 2 , when the sequence of changes terminates, these
packets will be accepted.

Lemma 6 means that a packet that arrives is eventually

> A,. 0

delivered. Lemma 4 assures of no duplicates (due to the strict
inequality there).

Since packets are delivered to the user only from cell
number 1 they are delivered in the correct order. 0

C. A WETE with FIFO Routing
The WETE presented and proven in the previous section

applies to an environment with general routing mechanisms.
In many cases knowledge about the actual routing may result
in processing and memory savings. We take as example FIFO
routing which is typical of circuit-switched networks as well as
virtual circuit-switching networks.

We refer to FIFO routing as a routing mechanism that
assures, for every pair of nodes s and d and within a single
CRP cycle, that:

1) The routing property (see Section 11) is obeyed.
2) Packets are not accepted out of order, i.e., if two packets

accepted at times td, < td, they had been sent at times t,, C t,,.
3) If a packet sent at time t in a given CRP cycle is not

accepted, then no packets sent after t will be accepted at that
cycle.

Within a FIFO routing environment the WETE can be
implemented in a simplified way. At the receiver, all packets
are immediately delivered, the counter nd is incremented, but
the ACK sent does not carry a CSN. A special ACK that does
carry a CSN (equaling nd) is sent only whenever the CN is
incremented.

At the source, receipt of an unnumbered ACK causes
discarding of the packet in cell number 1 and incrementing n,.
Receipt of a numbered acknowledgment ACK(d, s, n) causes
deletion of the n 8 n, first packets and retransmission of the
rest in sequential order.

The saving is manifested in the lack of buffer at the
receiver, shorter packets, simpler computation, and simpler
memory structure (the buffer at the source is a regular FIFO
buffer).

Furthermore, if the network provides virtual circuit routing
then it is possible to replace the global CRP by an appropriate
route set-upltake-down procedure. The properties required of
such a procedure are: 1) in the absence of topological changes
route set-up always succeeds, 2) if a link belonging to a route
fails, then within finite time the end nodes are notified and the
circuit is taken down and considered canceled, 3) following a
circuit cancellation a new circuit is established, and 4) no
packets sent in the past over a currently canceled circuit may
ever be received by a node after it has been notified of the
cancellation.

Given such a routing mechanism, the nodes execute the
same ETE algorithm interpreting a circuit setup as a CN
change. No messages should be sent between the cancellation
of a circuit and the establishment of its replacement. An
example of a route management procedure that fulfills the
above is given in [5] .

D. Dynamic Flow Control
The WETE protocol uses a fixed window of size N. In this

section, we suggest several ways in which the receiver can
effectively change the window size based on the congestion
measured at the receiver.

The problem with changing the window size is maintaining
the accountability of all the messages underway. Thus, a
simple way is to fix the window size at the beginning of a CRP
cycle when no packets are in transit. To allow window size
changes within a cycle (which is typically a long period) one
can artificially initiate a CRP cycle whenever the window
needs to be changed. In these solutions, large inefficiencies
and waste are introduced since they involve discarding packets
which would have been accepted.

An improvement along these lines is to use a selective
resynch mechanism which works exactly like the regular CRP

CIDON AND ROM: FAILSAFE END-TO-END PROTOCOLS 413

operating in the network, except that it causes discarding only
packets belonging to the specified pair. The selective
resynch is initiated only when the window needs to be changed
and a topological change does not occur. When a topological
change does occur, a regular (global) CRP is perform’ed
superseding the selective resynchs. As a result, the selective
resynch always operates within the same global CRP cycle and
therefore needs no internal cycle numbers.

The main drawback of the selective resynch is the fact that
its messages flood the network. To have only the effected
endpoints involved the receiver can withhold the ACK’s until
it is certain that no data packets are in transit (i.e., when a
windowful of packets have not been acknowledged) and then
send a special window changing packet.

A yet more flexible scheme can be devised using a window
of size N - W by withholding the W most recent A C K ’ s .
ACK(d, s, n) is sent only when packet P(s, d, n 0 W) is
accepted. This achieves our goal because when P(s, d, n 0
W) is in transit P(s, d, n) is as yet unacknowledged so there
can be at most N - W under way. In this case no special
coordination is required between the sender and the receiver-
all is managed by the receiver alone. This scheme allows the
freeing of W cells from the buffer, window size may be
decreased to zero (i.e., W = N), and increased to any size up
to N at any time. Note, however, that the last W packets must
be identified in order to be acknowledged and avoid dead-
locks. Note also that the sender must always keep the W
unacknowledged packets in case a new cycle starts when they
are retransmitted.

REFERENCES
[I] V. G. Cerf and R. E. Kahn, “A protocol for packet network

interconnection,” IEEE Trans. Commun., vol. COM-22, no. 5 , pp.
637-648, May 1974.

[2] M. C. Easton, “Design choices for selective-repeat retransmission
protocols,” IEEE Trans. Commun., vol. COM-29, no. 7, pp. 944-
953, July 1981.

[3] S. G. Finn, “Resynch procedures and fail-safe network protocol,”
IEEE Trans. Commun., vol. COM-27, no., 6, pp. 840-845, June
1979.

[4] Part I: Protocol extension,” EE Publication 485, Faculty of Electrical
Engineering, Technion, Haifa, Israel, Feb. 1984.
Electrical Engineering, Technion, Haifa, Israel, Feb. 1984.

[5] A. Segall and J. M. Jaffe, “Route setup with local idehtifiers,” IEEE
Trans. Commun., vol. COM-34, no. 1 , pp. 45-53,’Jan. 1986.

*
Israel Cidon received the B.Sc. (summa cum laude)
and the D.Sc. ,degrees from the Technion, Israel
Institute of Technology, Haifa, Israel, in 1980 and
1984, respectively, both in electrical engineering.

From 1977 to 1980, he was a consulting research
and development engineer involved in the design of
microprocessor-based equipment. From 1980 to
1984 he was a teaching assistant and an instructor at
the Technion. From 1984 to 1985, he was a faculty
member with the Faculty of Electrical Engineering
at the Technion. Since 1985, he has been with IBM

T. J . Watson Research Center. His current research interests are in distributed
algorithms and voicddata communication networks.

*

