
The Power of Prediction:

Cloud Bandwidth and Cost Reduction

Eyal Zohar
∗

Technion - Israel Institute of
Technology

eyalzo@tx.technion.ac.il

Israel Cidon
Technion - Israel Institute of

Technology

cidon@ee.technion.ac.il

Osnat (Ossi) Mokryn
†

Tel Aviv Academic College

ossi@mta.ac.il

ABSTRACT

In this paper we present PACK (Predictive ACKs), a novel end-to-
end Traffic Redundancy Elimination (TRE) system, designed for
cloud computing customers.

Cloud-based TRE needs to apply a judicious use of cloud re-
sources so that the bandwidth cost reduction combined with the ad-
ditional cost of TRE computation and storage would be optimized.
PACK’s main advantage is its capability of offloading the cloud-
server TRE effort to end-clients, thus minimizing the processing
costs induced by the TRE algorithm.

Unlike previous solutions, PACK does not require the server to
continuously maintain clients’ status. This makes PACK very suit-
able for pervasive computation environments that combine client
mobility and server migration to maintain cloud elasticity.

PACK is based on a novel TRE technique, which allows the
client to use newly received chunks to identify previously received
chunk chains, which in turn can be used as reliable predictors to
future transmitted chunks.

We present a fully functional PACK implementation, transparent
to all TCP-based applications and network devices. Finally, we
analyze PACK benefits for cloud users, using traffic traces from
various sources.

Categories and Subject Descriptors

C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms

Algorithms, Design, Measurement

Keywords

Caching, Cloud computing, Network optimization, Traffic redun-
dancy elimination

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

∗Also with HPI Research School.
†Also with Technion - Israel Institute of Technology.

1. INTRODUCTION
Cloud computing offers its customers an economical and con-

venient pay as you go service model, known also as usage-based

pricing [6]. Cloud customers1 pay only for the actual use of com-
puting resources, storage and bandwidth, according to their chang-
ing needs, utilizing the cloud’s scalable and elastic computational
capabilities. Consequently, cloud customers, applying a judicious
use of the cloud’s resources, are motivated to use various traffic re-
duction techniques, in particular Traffic Redundancy Elimination
(TRE), for reducing bandwidth costs.

Traffic redundancy stems from common end-users’ activities,
such as repeatedly accessing, downloading, distributing and modi-
fying the same or similar information items (documents, data, web
and video). TRE is used to eliminate the transmission of redundant
content and, therefore, to significantly reduce the network cost. In
most common TRE solutions, both the sender and the receiver ex-
amine and compare signatures of data chunks, parsed according
to the data content prior to their transmission. When redundant
chunks are detected, the sender replaces the transmission of each
redundant chunk with its strong signature [16, 23, 20]. Commer-
cial TRE solutions are popular at enterprise networks, and involve
the deployment of two or more proprietary protocol, state synchro-
nized middle-boxes at both the intranet entry points of data cen-
ters and branch offices, eliminating repetitive traffic between them
(e.g., Cisco [15], Riverbed [18], Quantum [24], Juniper [14], Blue-
coat [7], Expand Networks [9] and F5 [10]).

While proprietary middle-boxes are popular point solutions within
enterprises, they are not as attractive in a cloud environment. First,
cloud providers cannot benefit from a technology whose goal is to
reduce customer bandwidth bills, and thus are not likely to invest in
one. Moreover, a fixed client-side and server-side middle-box pair
solution is inefficient for a combination of a mobile environment,
which detaches the client from a fixed location, and cloud-side
elasticity which motivates work distribution and migration among
data centers. Therefore, it is commonly agreed that a universal,
software-based, end-to-end TRE is crucial in today’s pervasive en-
vironment [4, 1]. This enables the use of a standard protocol stack
and makes a TRE within end-to-end secured traffic (e.g., SSL) pos-
sible.

In this paper, we show that cloud elasticity calls for a new TRE
solution that does not require the server to continuously maintain
clients’ status. First, cloud load balancing and power optimizations
may lead to a server-side process and data migration environment,
in which TRE solutions that require full synchronization between
the server and the client are hard to accomplish or may lose ef-

1We refer as cloud customers to organizations that export ser-
vices to the cloud, and as users to the end-users and devices that
consume the service

ficiency due to lost synchronization. Moreover, the popularity of
rich media that consume high bandwidth motivates CDN solutions,
in which the service point for fixed and mobile users may change
dynamically according to the relative service point locations and
loads.

Finally, if an end-to-end solution is employed, its additional com-
putational and storage costs at the cloud-side should be weighed
against its bandwidth saving gains. Clearly, a TRE solution that
puts most of its computational effort on the cloud-side2 may turn
to be less cost-effective than the one that leverages the combined
client-side capabilities. Given an end-to-end solution, we have
found through our experiments that sender-based end-to-end TRE
solutions [23, 1] add a considerable load to the servers, which may
eradicate the cloud cost saving addressed by the TRE in the first
place. Moreover, our experiments further show that current end-to-
end solutions also suffer from the requirement to maintain end-to-
end synchronization that may result in degraded TRE efficiency.

In this paper, we present a novel receiver-based end-to-end TRE
solution that relies on the power of predictions to eliminate redun-
dant traffic between the cloud and its end-users. In this solution,
each receiver observes the incoming stream and tries to match its
chunks with a previously received chunk chain or a chunk chain
of a local file. Using the long-term chunks meta-data information
kept locally, the receiver sends to the server predictions that in-
clude chunks’ signatures and easy to verify hints of the sender’s
future data. Upon a hint match the sender triggers the TRE opera-
tion, saving the cloud’s TRE computational effort in the absence of
traffic redundancy.

Offloading the computational effort from the cloud to a large
group of clients forms a load distribution action, as each client
processes only its TRE part. The receiver-based TRE solution ad-
dresses mobility problems common to quasi-mobile desktop/laptops
computational environments. One of them is cloud elasticity due
to which the servers are dynamically relocated around the feder-
ated cloud, thus causing clients to interact with multiple changing
servers. Another property is IP dynamics, which compel roaming
users to frequently change IP addresses. In addition to the receiver-
based operation, we also suggest a hybrid approach, which allows a
battery powered mobile device to shift the TRE computation over-
head back to the cloud by triggering a sender-based end-to-end
TRE similar to [1].

To validate the receiver-based TRE concept, we implemented,
tested and performed realistic experiments with PACK within a
cloud environment. Our experiments demonstrate a cloud cost re-
duction achieved at a reasonable client effort while gaining addi-
tional bandwidth savings at the client side. The implementation
code, over 25,000 lines of C and Java, can be obtained from [22].
Our implementation utilizes the TCP Options field, supporting all
TCP-based applications such as web, video streaming, P2P, email,
etc.

We propose a new computationally light-weight chunking (fin-
gerprinting) scheme termed PACK chunking. PACK chunking is a
new alternative for Rabin fingerprinting traditionally used by RE
applications. Experiments show that our approach can reach data
processing speeds over 3 Gbps, at least 20% faster than Rabin fin-
gerprinting.

In addition, we evaluate our solution and compare it to previous
end-to-end solutions using tera-bytes of real video traffic consumed
by 40,000 distinct clients, captured within an ISP, and traffic ob-
tained in a social network service for over a month. We demonstrate
that our solution achieves 30% redundancy elimination without sig-

2We assume throughout the paper that the cloud-side, following
the current Web service model, is dominated by a sender operation.

nificantly affecting the computational effort of the sender, resulting
in a 20% reduction of the overall cost to the cloud customer.

The paper is organized as follows: Section 2 reviews existing
TRE solutions. In Section 3 we present our receiver-based TRE so-
lution and explain the prediction process and the prediction-based
TRE mechanism. In Section 4 we present optimizations to the
receiver-side algorithms. Section 5 evaluates data redundancy in a
cloud and compares PACK to sender-based TRE. Section 6 details
our implementation and discusses our experiments and results.

2. RELATED WORK
Several TRE techniques have been explored in recent years. A

protocol-independent TRE was proposed in [23]. The paper de-
scribes a packet-level TRE, utilizing the algorithms presented in [16].

Several commercial TRE solutions described in [15] and [18],
have combined the sender-based TRE ideas of [23] with the al-
gorithmic and implementation approach of [20] along with proto-
col specific optimizations for middle-boxes solutions. In particular,
[15] describes how to get away with three-way handshake between
the sender and the receiver if a full state synchronization is main-
tained.

[3] and [5] present redundancy-aware routing algorithm. These
papers assume that the routers are equipped with data caches, and
that they search those routes that make a better use of the cached
data.

A large-scale study of real-life traffic redundancy is presented in
[11], [25] and [4]. Our paper builds on the latter’s finding that ”an
end to end redundancy elimination solution, could obtain most of
the middle-box’s bandwidth savings”, motivating the benefit of low
cost software end-to-end solutions.

Wanax [12] is a TRE system for the developing world where
storage and WAN bandwidth are scarce. It is a software-based
middle-box replacement for the expensive commercial hardware.
In this scheme, the sender middle-box holds back the TCP stream
and sends data signatures to the receiver middle-box. The receiver
checks whether the data is found in its local cache. Data chunks that
are not found in the cache are fetched from the sender middle-box
or a nearby receiver middle-box. Naturally, such a scheme incurs a
three-way-handshake latency for non-cached data.

EndRE [1] is a sender-based end-to-end TRE for enterprise net-
works. It uses a new chunking scheme that is faster than the commonly-
used Rabin fingerprint, but is restricted to chunks as small as 32-64
bytes. Unlike PACK, EndRE requires the server to maintain a fully
and reliably synchronized cache for each client. To adhere with the
server’s memory requirements these caches are kept small (around
10 MB per client), making the system inadequate for medium-to-
large content or long-term redundancy. EndRE is server specific,
hence not suitable for a CDN or cloud environment.

To the best of our knowledge none of the previous works have
addressed the requirements for a cloud computing friendly, end-to-
end TRE which forms PACK’s focus.

3. THE PACK ALGORITHM
For the sake of clarity, we first describe the basic receiver-driven

operation of the PACK protocol. Several enhancements and opti-
mizations are introduced in Section 4.

The stream of data received at the PACK receiver is parsed to
a sequence of variable size, content-based signed chunks similar
to [16][20]. The chunks are then compared to the receiver local
storage, termed chunk store. If a matching chunk is found in the
local chunk store, the receiver retrieves the sequence of subsequent
chunks, referred to as a chain, by traversing the sequence of LRU

Chain 1

Chunk 1 Chunk 2 Chunk 3

Byte stream

Anchor 1 Anchor 2 Anchor 3 Anchor 4

Sign. 1 Sign. 2 Sign. 3

Sliding

window

Figure 1: From stream to chain

chunk pointers that are included in the chunks’ metadata. Using the
constructed chain, the receiver sends a prediction to the sender for
the subsequent data. Part of each chunk’s prediction, termed a hint,
is an easy to compute function with a small enough false-positive
value, such as the value of the last byte in the predicted data or a
byte-wide XOR checksum of all or selected bytes. The prediction
sent to the receiver includes the range of the predicted data, the hint
and the signature of the chunk. The sender identifies the predicted
range in its buffered data, and verifies the hint for that range. If
the result matches the received hint, it continues to perform the
more computationally intensive SHA-1 signature operation. Upon
a signature match, the sender sends a confirmation message to the
receiver, enabling it to copy the matched data from its local storage.

3.1 Receiver Chunk Store
PACK uses a new chains scheme, described in Figure 1, in which

chunks are linked to other chunks according to their last received
order. The PACK receiver maintains a chunk store, which is a large
size cache of chunks and their associated meta-data. Chunk’s meta-
data includes the chunk’s signature and a (single) pointer to the
successive chunk in the last received stream containing this chunk.
Caching and indexing techniques are employed to efficiently main-
tain and retrieve the stored chunks, their signatures and the chains
formed by traversing the chunk pointers.

When the new data is received and parsed to chunks, the receiver
computes each chunk’s signature using SHA-1. At this point, the
chunk and its signature are added to the chunk store. In addition,
the meta-data of the previously received chunk in the same stream
is updated to point to the current chunk.

The unsynchronized nature of PACK allows the receiver to map
each existing file in the local file system to a chain of chunks, saving
in the chunk store only the meta-data associated with the chunks.
3 Using the latter observation, the receiver can also share chunks
with peer clients within the same local network utilizing a simple
map of network drives.

3.1.1 Chunk Size

The utilization of a small chunk size presents better redundancy
elimination when data modifications are fine-grained, such as spo-
radic changes in a HTML page. On the other hand, the use of
smaller chunks increases the storage index size, memory usage and
magnetic disk seeks. It also increases the transmission overhead of
the virtual data exchanged between the client and the server.

3De-duplicated storage systems provide similar functionality
and can be used for this purpose.

Unlike IP level TRE solutions that are limited by the IP packet
size (∼1,500 bytes), PACK operates on TCP streams, and can,
therefore, handle large chunks and entire chains. Although our
design permits each PACK client to use any chunk size, we rec-
ommend an average chunk size of 8KB (see Section 6).

3.2 The Receiver Algorithm
Upon the arrival of new data, the receiver computes the respec-

tive signature for each chunk, and looks for a match in its local
chunk store. If the chunk’s signature is found, the receiver deter-
mines whether it is a part of a formerly received chain, using the
chunks’ meta-data. If affirmative, the receiver sends a prediction
to the sender for several next expected chain chunks. The predic-
tion carries a starting point in the byte stream (i.e., offset) and the
identity of several subsequent chunks (PRED command).

Upon a successful prediction, the sender responds with a PRED-
ACK confirmation message. Once the PRED-ACK message is re-
ceived and processed, the receiver copies the corresponding data
from the chunk store to its TCP input buffers, placing it according
to the corresponding sequence numbers. At this point, the receiver
sends a normal TCP ACK with the next expected TCP sequence
number. In case the prediction is false, or one or more predicted
chunks are already sent, the sender continues with normal oper-
ation, e.g., sending the raw data, without sending a PRED-ACK
message.

Proc. 1 Receiver Segment Processing

1. if segment carries payload data then

2. calculate chunk
3. if reached chunk boundary then

4. activate predAttempt()
5. end if

6. else if PRED-ACK segment then

7. processPredAck()
8. activate predAttempt()
9. end if

Proc. 2 predAttempt()

1. if received chunk matches one in chunk store then

2. if foundChain(chunk) then

3. prepare PREDs
4. send single TCP ACK with PREDs according to Options

free space
5. exit
6. end if

7. else

8. store chunk

9. link chunk to current chain
10. end if

11. send TCP ACK only

Proc. 3 processPredAck()

1. for all offset ∈ PRED-ACK do

2. read data from chunk store
3. put data in TCP input buffer
4. end for

3.3 The Sender Algorithm
When a sender receives a PRED message from the receiver, it

tries to match the received predictions to its buffered (yet to be sent)
data. For each prediction, the sender determines the corresponding
TCP sequence range and verifies the hint. Upon a hint match, the
sender calculates the more computationally intensive SHA-1 sig-
nature for the predicted data range, and compares the result to the
signature received in the PRED message. Note that in case the hint
does not match, a computationally expansive operation is saved.
If the two SHA-1 signatures match, the sender can safely assume
that the receiver’s prediction is correct. In this case, it replaces the
corresponding outgoing buffered data with a PRED-ACK message.

Figure 2 illustrates the sender operation using state machines.
Figure 2a describes the parsing of a received PRED command. Fig-
ure 2b describes how the sender attempts to match a predicted range
to its outgoing data. First, it finds out if this range has been already
sent or not. In case the range has already been acknowledged, the
corresponding prediction is discarded. Otherwise, it tries to match
the prediction to the data in its outgoing TCP buffers.

Append to

prediction

queue

Calc TCP

sequence

Accept

PRED

Next

chunk in

PRED

Idle

PRED

end

(a) Filling the prediction queue

Check

if still

relevant

Get from

prediction

queue

Wait

application

data

Check

hint

Already

ACKed

Idle

Data

received

Relevant

Check

SHA-1

Match

Send

PRED-ACK

Timer

expired

Match

Cleanup

prediction

queue

Miss
Miss

Send

raw data

(b) Processing the prediction queue and sending PRED-ACK
or raw data

Figure 2: Sender algorithms

SYN

S
e
n
d
e
r

SYN+ACK

PACK

permittedPACK

permitted

R
e
c
e

iv
e

r

DATA

ACK PRED

PRED

ACK

Figure 3: PACK wired protocol in a nutshell

3.4 The Wired Protocol
In order to conform with existing firewalls and minimize over-

heads, we use the TCP Options field to carry the PACK wired pro-
tocol. It is clear that PACK can also be implemented above the TCP
level while using similar message types and control fields.

Figure 3 illustrates the way the PACK wired protocol operates
under the assumption that the data is redundant. First, both sides
enable the PACK option during the initial TCP handshake by adding
a PACK permitted flag (denoted by a bold line) to the TCP Options
field. Then, the sender sends the (redundant) data in one or more
TCP segments, and the receiver identifies that a currently received
chunk is identical to a chunk in its chunk store. The receiver, in
turn, triggers a TCP ACK message and includes the prediction in
the packet’s Options field. Last, the sender sends a confirmation
message (PRED-ACK) replacing the actual data.

4. OPTIMIZATIONS
For the sake of clarity, the previous section presents the most ba-

sic version of the PACK protocol. In the following one, we describe
additional options and optimizations.

4.1 Adaptive Receiver Virtual Window
PACK enables the receiver to locally obtain the sender’s data

when a local copy is available, thus eliminating the need to send
this data through the network. We term the receiver’s fetching of
such local data as the reception of virtual data.

When the sender transmits a high volume of virtual data, the
connection rate may be, to a certain extent, limited by the number
of predictions sent by the receiver. This, in turn, means that the
receiver predictions and the sender confirmations should be expe-
dited in order to reach high virtual data rate. For example, in case
of a repetitive success in predictions, the receiver’s side algorithm
may become optimistic and gradually increase the ranges of its pre-
dictions, similarly to the TCP rate adjustment procedures.

PACK enables a large prediction size by either sending several
successive PRED commands or by enlarging PRED command range
to cover several chunks.

PACK enables the receiver to combine several chunks into a sin-
gle range, as the sender is not bounded to the anchors originally
used by the receiver’s data chunking algorithm. The combined
range has a new hint and a new signature that is a SHA-1 of the
concatenated content of the chunks.

The variable prediction size introduces the notion of a virtual

window, which is the current receiver’s window for virtual data.
The virtual window is the receiver’s upper bound for the aggre-
gated number of bytes in all the pending predictions. The virtual

Proc. 4 predAttemptAdaptive() - obsoletes Proc. 2

1. {new code for Adaptive}
2. if received chunk overlaps recently sent prediction then

3. if received chunk matches the prediction then

4. predSizeExponent()

5. else

6. predSizeReset()

7. end if

8. end if

9. if received chunk matches one in signature cache then

10. if foundChain(chunk) then

11. {new code for Adaptive}
12. prepare PREDs according to predSize

13. send TCP ACKs with all PREDs
14. exit
15. end if

16. else

17. store chunk

18. append chunk to current chain
19. end if

20. send TCP ACK only

Proc. 5 processPredAckAdaptive() - obsoletes Proc. 3

1. for all offset ∈ PRED-ACK do

2. read data from disk
3. put data in TCP input buffer
4. end for

5. {new code for Adaptive}
6. predSizeExponent()

window is first set to a minimal value, which is identical to the
receiver’s flow control window. The receiver increases the virtual
window with each prediction success, according to the following
description.

Upon the first chunk match, the receiver sends predictions lim-
ited to its initial virtual window. It is likely that, before the pre-
dictions arrive at the sender, some of the corresponding real data
is already transmitted from it. When the real data arrives, the re-
ceiver can partially confirm its prediction and increase the virtual
window. Upon getting PRED-ACK confirmations from the sender,
the receiver also increases the virtual window. This logic resem-
bles the slow-start part of the TCP rate control algorithm. When
a mismatch occurs, the receiver switches back to the initial virtual
window.

Proc. 4 describes the advanced algorithm performed at the re-
ceiver’s side. The code at lines 2-8 describes PACK behavior when
a data segment arrives after its prediction was sent and the virtual
window is doubled. Proc. 5 describes the reception of a success-
ful acknowledgement message (PRED-ACK) from the sender. The
receiver reads the data from the local chunk store. It then modi-
fies the next byte sequence number to the last byte of the redundant
data that has just been read plus one, and sends the next TCP ACK,
piggybacked with the new prediction. Finally, the virtual window
is doubled.

The size increase of the virtual window introduces a trade-off in
case the prediction fails from some point on. The code in Proc. 4
line 6 describes the receiver’s behavior when the arriving data does
not match the recently sent predictions. The new received chunk
may, of course, start a new chain match. Following the reception of
the data, the receiver reverts to the initial virtual window (conform-
ing to the normal TCP receiver window size) until a new match

Proc. 6 Receiver Segment Processing Hybrid - obsoletes Proc. 1

1. if segment carries payload data then

2. calculate chunk
3. if reached chunk boundary then

4. activate predAttempt()
5. {new code for Hybrid}
6. if detected broken chain then

7. calcDispersion(255)
8. else

9. calcDispersion(0)
10. end if

11. end if

12. else if PRED-ACK segment then

13. processPredAck()
14. activate predAttempt()
15. end if

Proc. 7 processPredAckHybrid() - obsoletes Proc. 3

1. for all offset ∈ PRED-ACK do

2. read data from disk
3. put data in TCP input buffer
4. {new code for Hybrid}
5. for all chunk ∈ offset do

6. calcDispersion(0)
7. end for

8. end for

is found in the chunk store. Note that even a slight change in the
sender’s data, compared with the saved chain, causes the entire pre-
diction range to be sent to the receiver as raw data. Hence, using
large virtual windows introduces a tradeoff between the potential
rate gain and the recovery effort in the case of a missed prediction.

4.2 The Hybrid Approach
PACK’s receiver-based mode is less efficient if changes in the

data are scattered. In this case, the prediction sequences are fre-
quently interrupted, which, in turn, forces the sender to revert to
raw data transmission until a new match is found at the receiver
and reported back to the sender. To that end, we present the PACK
hybrid mode of operation. When PACK recognizes a pattern of dis-
persed changes, it may select to trigger a sender-driven approach in
the spirit of [23][15][18][5].

However, as was explained earlier, we would like to revert to the
sender-driven mode with a minimal computational and buffering
overhead at the server in the steady state. Therefore, our approach
is to first evaluate at the receiver the need for a sender-driven op-
eration and then to report it back to the sender. At this point, the
sender can decide if it has enough resources to process a sender-
driven TRE for some of its clients. To support this enhancement,
an additional command (DISPER) is introduced. Using this com-
mand, the receiver periodically sends its estimated level of disper-
sion, ranging from 0 for long smooth chains, up to 255.

PACK computes the data dispersion value using an exponential
smoothing function:

D ← αD + (1− α)M (1)

Where α is a smoothing factor. The value M is set to 0 when a
chain break is detected and 255 otherwise.

5. EVALUATION
The objective of this section is twofold: evaluating the potential

data redundancy for several applications that are likely to reside in
a cloud, and to estimate the PACK performance and cloud costs of
the redundancy elimination process.

Our evaluations are conducted using (i) video traces captured
at a major ISP, (ii) traffic obtained from a popular social network
service, and (iii) genuine data sets of real-life workloads. In this
section, we relate to an average chunk size of 8 KB, although our
algorithm allows each client to use a different chunk size.

5.1 Traffic Redundancy

5.1.1 Traffic Traces

We obtained a 24 hours recording of traffic at an ISP’s 10 Gbps
PoP router, using a 2.4 GHz CPU recording machine with 2 TB
storage (4 x 500 GB 7,200 RPM disks) and 1 Gbps NIC. We fil-
tered YouTube traffic using deep packet inspection, and mirrored
traffic associated with YouTube servers IP addresses to our record-
ing device. Our measurements show that YouTube traffic accounts
for 13% of the total daily web traffic volume of this ISP. The record-
ing of the full YouTube stream would require 3 times our network
and disk write speeds. Therefore, we isolated 1/6 of the obtained
YouTube traffic, grouped by the video identifier (keeping the re-
dundancy level intact) using a programmed load balancer that ex-
amined the upstream HTTP requests and redirected downstream
sessions according to the video identifier that was found in the
YouTube’s URLs, to a total of 1.55 TB. We further filtered out the
client IP addresses that were used too intensively to represent a sin-
gle user, and were assumed to represent a NAT address.

Note that YouTube’s video content is not cacheable by stan-
dard Web proxies since its URL contains private single-use tokens
changed with each HTTP request. Moreover, most Web browsers
cannot cache and reuse partial movie downloads that occur when
end-users skip within a movie, or switch to another movie before
the previous one ends.

Table 1 summarizes our findings. We recorded more than 146K
distinct sessions, in which 37K users request over 39K distinct
movies. Average movie size is 15 MB while the average session
size is 12 MB, with the difference stemming from end-user skips
and interrupts. When the data is sliced into 8 KB chunks, PACK
brings a traffic savings of up to 30%, assuming the end-users start
with an empty cache, which is a worst case scenario.

Figure 4 presents the YouTube traffic and the redundancy ob-
tained by PACK over the entire period, with the redundancy sam-
pled every 10 minutes and averaged. This end-to-end redundancy
arises solely from self similarity in the traffic created by end-users.
We further analyzed these cases and found that end-users very of-
ten download the same movie or parts of it repeatedly. The latter
is mainly an inter-session redundancy produced by end-users that
skip forward and backward in a movie and producing several (par-
tially) overlapping downloads. Such skips occurred at 15% of the
sessions and mostly in long movies (over 50 MB).

Since we assume the cache is empty at the beginning, it takes
a while for the chunk cache to fill up and enter a steady state. In
the steady state, around 30% of the traffic is identified as redundant
and removed. We explain the length of the warm-up time by the
fact that YouTube allows browsers to cache movies for 4 hours,
which results in some replays that do not produce downloads at all.

Table 1: Data and PACK’s results of 24 hours YouTube traffic trace

Recorded

Traffic volume 1.55TB

Max speed 473Mbps

Est. PACK TRE 29.55%

Sessions 146,434

Unique videos 39,478

Client IPs 37,081

0%

5%

10%

15%

20%

25%

30%

35%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
A

C
K

 T
R

E
 (

R
e

m
o

v
e

d
 R

e
d

u
n

d
a

n
c

y
)

A
ll

 Y
o

u
T
u

b
e

 T
ra

ff
ic

 (
G

b
p

s
)

Time (24 hours)

YouTube Traffic

PACK TRE

Figure 4: ISP’s YouTube traffic over 24 hours, and PACK redun-
dancy elimination ratio with this data

5.1.2 Static Data-set

We acquired the following static data-sets:

Linux source Different Linux kernel versions: all the forty 2.0.x
tar files of the kernel source code that sum up to 1 GB.

Email A single-user Gmail account with 1,140 email messages
over a year, that sum up to 1.09 GB.

The 40 Linux source versions were released over a period of
two years. All tar files in the original release order, from 2.0.1
to 2.0.40, were downloaded to a download directory, mapped by
PACK, to measure the amount of redundancy in the resulted traffic.
Figure 5a shows the redundancy in each of the downloaded ver-
sions. Altogether the Linux source files show 83.1% redundancy,
which accounts to 830 MB.

To obtain an estimate of the redundancy in email traffic we oper-
ated an IMAP client that fully synchronized the remote Gmail ac-
count with a new local folder. Figure 5b shows the redundancy in
each month, according to the email message’s issue date. The total
measured traffic redundancy was 31.6%, which is roughly 350 MB.
We found this redundancy to arise from large attachments that are
sent by multiple sources, email correspondence with similar docu-
ments in development process and replies with large quoted text.

This result is a conservative estimate of the amount of redun-
dancy in cloud email traffic, because in practice some messages are
read and downloaded multiple times. For example, a Gmail user
that reads the same attachment for 10 times, directly from the web
browser, generates 90% redundant traffic.

Our experiments show that in order to derive an efficient PACK
redundancy elimination, the chunk level redundancy needs to be
applied along long chains. To quantify this phenomenon, we ex-

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

T
ra

ff
ic

 V
o

lu
m

e
 P

e
r

F
il

e
 (

M
B

)

File "linux-2.0.x.tar"

Redundant

Non-redundant

(a) Linux source: 40 different Linux kernel versions

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
ra

ff
ic

 V
o

lu
m

e
 P

e
r

M
o

n
th

 (
M

B
)

Month

Redundant

Non-redundant

(b) Email: 1-year Gmail account by month

Figure 5: Traffic volume and detected redundancy

plored the distribution of redundant chains in the Linux and Email
data-sets. Figure 6 presents the resulted redundant data chain length
distribution. In Linux 54% of the chunks are found in chains, and
in Email about 88%. Moreover, redundant chunks are more proba-
ble to reside in long chains. These findings sustain our conclusion
that once redundancy is discovered in a single chunk, it is likely to
continue in subsequent chunks.

Furthermore, our evaluations show that in videos and large files
with a small amount of changes, redundant chunks are likely to
reside in very long chains that are efficiently handled by a receiver-
based TRE.

5.2 Receiver-Based vs. Sender-Based TRE
In this subsection, we evaluate the sender performance of PACK

as well as of a sender-based end-to-end TRE.

5.2.1 The Server Computational Effort

First, we evaluate the computational effort of the server in both
cases. In PACK, the server is required to perform a SHA-1 op-
eration over a defined range of bytes (the prediction determines a
starting point, i.e., offset, and the size of the prediction) only after
it verifies that the hint, sent as a part of the prediction, matches the
data. In the sender-based TRE, the server is required to first com-

0%

5%

10%

15%

20%

25%

P
ro

b
a

b
il

it
y
 o

f
a

 S
in

g
le

 R
e

d
u

n
d

a
n

t
C

h
u

n
k

 t
o

B

e
 P

a
rt

 o
f

a
 C

h
a

in
 b

y
 C

h
a

in
's

 L
e

n
g

th

Chain Length (Chunk Count)

Software

Email

Figure 6: Chain length histogram Linux Software and Email data
collections

pute Rabin fingerprints in order to slice the stream into chunks, and
then to compute a SHA-1 signature for each chunk, prior to sending
it. Table 2 presents a summary of the server computational effort
of each sender-based TRE described in the literature, as well as of
PACK.

To further evaluate the server computational effort for the differ-
ent sender-based and PACK TRE schemes, we measured the server
effort as a function of time and traffic redundancy. For the sender-
based scheme we simulated the approach of [12] using their pub-
lished performance benchmarks4 . We then measured the server per-
formance as a function of the download time and redundant traffic
for the Email data-set, that contains 31.6% redundancy. The sender
effort is expressed by the number of SHA-1 operations per second.

Figure 7a demonstrates the high effort placed on a server in
a sender-based scheme, compared to the much lower effort of a
PACK sender, which performs SHA-1 operations only for data that
matches the hint. Moreover, Figure 7b shows that the PACK server
computational effort grows linearly with the amount of redundant
data. As a result, the server works only when a redundancy is ob-
served and the client reads the data from its local storage instead
of receiving it from the server. This scenario demonstrates how the
server’s and the client’s incentives meet: while the server invests
the effort into saving traffic volume, the client cooperates to save
volume and get faster downloads.

5.2.2 Synchronization

Several sender-based end-to-end TRE mechanisms require full
synchronization between the sender and the receiver caches. When
such synchronization exists, the redundancy is detected and elim-
inated upfront by the sender. While this synchronization saves
an otherwise required three-way handshake, it ignores redundant
chunks that arrive at the receiver from different senders. This prob-
lem is avoided in PACK, but we did not account this extra efficiency
in our current study.

To further understand how TRE would work for a cloud-based
web service with returning end-users, we obtained a traffic log from
a social network site for a period of 33 days at the end of 2010. The
data log enables a reliable long term detection of returning users,
as users identify themselves using a login to enter the site. We

4The taken benchmarks: For 8 KB chunks the SHA-1 calcula-
tion throughput is about 250 Mbps with a Pentium III 850MHz and
500 Mbps with a Pentium D 2.8 GHz. Rabin fingerprint chunking
is reported to be 2-3 times slower.

Table 2: Sender computational effort comparison between different TRE mechanisms

System Avg. Chunk Size Sender Chunking Sender Signing Receiver Chunking Receiver Signing

PACK Unlimited, receiver’s
choice

None SHA-1: true predic-
tions and 0.4% of
false predictions

PACK chunking: all
real data

SHA-1: all real data

Wanax [12] Multiple Multi-Resolution
Chunking (MRC):
all data

SHA-1: all data Multi-Resolution
Chunking (MRC):
all data

SHA-1: all real data

LBFS [20] Flexible, 8KB Rabin: all modified
data (not relying on
database integrity)

SHA-1: all modified
data (not relying on
database integrity)

Rabin: all modified
data (not relying on
database integrity)

SHA-1: all modified
data (not relying on
database integrity)

[3] None (representative
fingerprints)

Rabin: all data (for
lookup)

(see Sender Chunk-
ing)

None None

EndRE [1]
Chunk-Match

Limited, 32-64 bytes SampleByte: all data
(optionally less, at
the cost of reduced
compression)

SHA-1: all data (for
chunk lookup)

None None

identified the sessions of 7,000 registered users over this period.
We then measured the amount of TRE that can be obtained with
different cache sizes at the receiver (a synchronized sender-based
TRE keeps a mirror of the last period cache size).

Figure 8 shows the redundancy that can be obtained for differ-
ent caching periods. Clearly, a short-term cache cannot identify
returning long-term sessions.

5.2.3 Users Mobility

Using the social network data-set presented above, we explored
the effect of users’ mobility on TRE. We focused on users that con-
nected through 3G cellular networks with many device types (PCs,
smartphones, etc.). Users are required to complete a registration
progress, in which they enter their unique cellular phone number
and get a password through SMS message.

We found that 62.1% of the cellular sessions were conducted by
users that also got connected to the site through a non-cellular ISP
with the same device. Clearly, TRE solutions that are attached to
a specific location or rely on static client IP address cannot exploit
this redundancy.

Another related finding was that 67.1% of the cellular sessions
used IP addresses that were previously used by others in the same
data-set. On non-cellular sessions we found only 2.2% of IP reuse.
This one is also a major obstacle for synchronized solutions that re-
quire a reliable protocol-independent detection of returning clients.

5.3 Estimated Cloud Cost for YouTube Traf-
fic Traces

As noted before, although TRE reduces cloud traffic costs, the
increased server efforts for TRE computation result in increased
server-hours cost.

We evaluate here the cloud cost of serving the YouTube videos
described in Section 5.1 and compare three setups: without TRE,
with PACK and with a sender-based TRE. The cost comparison
takes into account server-hours and overall outgoing traffic through-
put, while omitting storage costs that we found to be very similar
in all the examined setups.

The baseline for this comparison is our measurement of a single
video server that outputs up to 350 Mbps to 600 concurrent clients.
Given a cloud with an array of such servers, we set the cloud policy
to add a server when there is less than 0.25 CPU computation power
unemployed in the array. A server is removed from this array if,
after its removal, there is at least 0.5 CPU power left unused.

Table 3: Cloud operational cost comparison

No TRE PACK Server-

based

Traffic volume 9.1 TB 6.4 TB 6.2 TB
Traffic cost reduction
(Figure 4)

30% 32%

Server-hours cost in-
crease (Figure 9)

6.1% 19.0%

Total operational cost 100% 80.6% 83.0%

The sender-based TRE was evaluated only using a server’s cost
for a SHA-1 operation per every outgoing byte, which is performed
in all previously published works that can detect YouTube’s long-
term redundancy.

Figure 9 shows, in the shaded part, the number of server-hours
used to serve the YouTube traffic from the cloud, with no TRE
mechanism. This is our base figure for costs, which is taken as the
100% cost figure for comparison. Figure 9 also shows the number
of server-hours needed for this task with either PACK TRE or the
sender-based TRE. While PACK puts an extra load of almost one
server for only 30% of the time, which accounts for the amount
of redundancy eliminated, the sender-based TRE scheme requires
between one to two additional servers for almost 90% of the time,
resulting in a higher operational cost for 32% redundancy elimina-
tion.

Table 3 summarizes the costs and the benefits of the TRE op-
erations and compares them to a baseline with no TRE. The total
operational cost is based on current Amazon EC2 [2] pricing for
the given traffic-intensive scenario (traffic:server-hours cost ratio
of 7:3). Both TRE schemes identify and eliminate the traffic re-
dundancy. However, while PACK employs the server only when
redundancy exists, the sender-based TRE employs it for the entire
period of time, consuming more servers than PACK and no-TRE
schemes when no or little redundancy is detected.

6. IMPLEMENTATION
In this section, we present PACK implementation, its perfor-

mance analysis and the projected server costs derived from the im-
plementation experiments.

Our implementation contains over 25,000 lines of C and Java

0

10

20

30

40

50

60

70

0 500 1,000 1,500 2,000 2,500 3,000

S
H

A
-1

 O
p

e
ra

ti
o

n
s

 p
e

r
S

e
c

o
n

d

Time (Seconds)

Sender based

PACK

(a) Server effort as a function of time

0

10

20

30

40

50

60

70

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
H

A
-1

 O
p

e
ra

ti
o

n
s

 p
e

r
S

e
c

o
n

d

PACK Redundant Data Speed (Mbps)

Sender based

PACK

PACK linear approximation

(b) Sender effort relative to redundant chunks signatures download
time (virtual speed)

Figure 7: Difference in computation efforts between receiver and
sender-driven modes for the transmission of Email data collection

code. It runs on Linux with Netfilter Queue [21]. Figure 10 shows
the PACK implementation architecture. At the server side, we use
an Intel Core 2 Duo 3 GHz, 2 GB of RAM and a WD1600AAJS
SATA drive desktop. The clients laptop machines are based on an
Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM and a WD2500BJKT
SATA drive.

Our implementation enables the transparent use of the TRE at
both the server and the client. PACK receiver-sender protocol is
embedded in the TCP Options field for low overhead and compat-
ibility with legacy systems along the path. We keep the genuine
operating systems’ TCP stacks intact, allowing a seamless integra-
tion with all applications and protocols above TCP.

Chunking and indexing are performed only at the client’s side,
enabling the clients to decide independently on their preferred chunk
size. In our implementation, the client uses an average chunk size
of 8 KB. We found this size to achieve high TRE hit-ratio in the
evaluated data-sets, while adding only negligible overheads of 0.1%
in meta-data storage and 0.15% in predictions bandwidth.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

A
v
e

ra
g

e
 R

e
d

u
n

d
a

n
c

y
 o

f
D

a
il

y
 T

ra
ff

ic

Days Since Start

Unlimited

1 Hour

24 Hours

Figure 8: Social network site: traffic redundancy per day with dif-
ferent time-lengths of cache

0

2

4

6

8

10

12

A
c

ti
v
e

 C
lo

u
d

 S
e

rv
e

rs
 b

y
 +

0
.2

5
 -

0
.5

 P
o

li
c

y

Time (24 hours)

Sender-based TRE

PACK

No TRE

Figure 9: Number of cloud servers needed for serving YouTube
traffic without TRE, with sender-based TRE or PACK

Chunk

store

PACK

receiverr

PACK

sender

TCP

stack

TCP

stack

TCP

protocol
AppsApps

ClientServer

Figure 10: Overview of the PACK implementation

For the experiments held in this section, we generated a work-
load consisting of Section 5 data-sets: IMAP emails, HTTP videos
and files downloaded over FTP. The workload was then loaded to
the server, and consumed by the clients. We sampled the machines’
status every second to measure real and virtual traffic volumes and
CPU utilization.

0%

20%

40%

60%

80%

100%

120%

140%

0% 10% 20% 30% 40% 50%

S
in

g
le

 S
e

rv
e

r
C

lo
u

d
 O

p
e

ra
ti

o
n

a
l
C

o
s

t
(1

0
0

%
=

w
it

h
o

u
t

T
R

E
 s

y
s

te
m

)

Redundancy Elimination Ratio

EndRE-like

PACK

Figure 11: PACK vs. EndRE-like cloud server operational cost as
a function of redundancy ratio

6.1 Server Operational Cost
We measured the server performance and cost as a function of

the data redundancy level in order to capture the effect of the TRE
mechanisms in real environment. To isolate the TRE operational
cost, we measured the server’s traffic volume and CPU utilization at
maximal throughput without operating a TRE. We then used these
numbers as a reference cost, based on present Amazon EC2 [2]
pricing. The server operational cost is composed of both the net-
work traffic volume and the CPU utilization, as derived from the
EC2 pricing.

We constructed a system consisting of one server and seven clients
over a 1 Gbps network. The server was configured to provide a
maximal throughput of 50 Mbps per client. We then measured
three different scenarios, a baseline no-TRE operation, PACK and
a sender-based TRE similar to EndRE’s Chunk-Match [1], referred
to as EndRE-like. For the EndRE-like case, we accounted for the
SHA-1 calculated over the entire outgoing traffic, but did not ac-
count for the chunking effort. In the case of EndRE-like, we made
the assumption of unlimited buffers at both the server and client
sides to enable the same long-term redundancy level and TRE ratio
of PACK.

Figure 11 presents the overall processing and networking cost
for traffic redundancy, relative to no-TRE operation. As the redun-
dancy grows, the PACK server cost decreases due to the bandwidth
saved by unsent data. However, the EndRE-like server does not
gain a significant cost reduction since the SHA-1 operations are
performed over non-redundant data too. Note that at above 25%
redundancy, which is common to all reviewed data-sets, the PACK
operational cost is at least 20% lower than that of EndRE-like.

6.2 PACK Impact on the Client CPU
To evaluate the CPU effort imposed by PACK on a client, we

measured a random client under a scenario similar to the one used
for measuring the server’s cost, only this time the cloud server
streamed videos at a rate of 9 Mbps to each client. Such a speed
throttling is very common in real-time video servers that aim to
provide all clients with stable bandwidth for smooth view.

Table 4 summarizes the results. The average PACK-related CPU
consumption of a client is less than 4% for 9 Mbps video with
36.4% redundancy.

Figure 12a presents the client CPU utilization as a function of
the real incoming traffic bandwidth. Since the client chunks the
arriving data, the CPU utilization grows as more real traffic enters
the client’s machine. Figure 12b shows the client CPU utilization

Table 4: Client CPU utilization when streaming 9 Mbps video with
and without PACK

No-TRE avg. CPU 7.85%
PACK avg. CPU 11.22%
PACK avg. TRE ratio 36.4%
PACK min CPU 7.25%
PACK max CPU 23.83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

C
li

e
n

t
C

P
U

 U
ti

li
z
a

ti
o

n
 w

it
h

 P
A

C
K

(B
a

s
e

li
n

e
 =

 w
it

h
o

u
t

T
R

E
 s

y
s

te
m

)

Real Incoming Traffic (Mbps)

Baseline

(a) Real traffic

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

C
li

e
n

t
C

P
U

 U
ti

li
z
a

ti
o

n
 w

it
h

 P
A

C
K

(B
a

s
e

li
n

e
 =

 w
it

h
o

u
t

T
R

E
 s

y
s

te
m

)

Virtual Incoming Traffic (Mbps)

Baseline

(b) Virtual traffic

Figure 12: Client CPU utilization as a function of the received traf-
fic, when the client’s CPU utilization without TRE is used as a
baseline

as a function of the virtual traffic bandwidth. Virtual traffic arrives
in the form of prediction approvals from the sender, and is limited
to a rate of 9 Mbps by the server’s throttling. The approvals save
the client the need to chunk data or sign the chunks, and enable him
to send more predictions based on the same chain that was just used
successfully. Hence, the more redundancy is found, the less CPU
utilization incurred by PACK.

6.3 Chunking Scheme
Our implementation employs a novel computationally light-weight

chunking (fingerprinting) scheme, termed PACK chunking. The
scheme, presented in Proc. 8 and illustrated in Figure 13, is a XOR-

64 bits

n

n-1

n-2

n-3
n-4

n-5
n-6

n-7

n-8

n-40

n-41

n-42
n-43

n-44

n-45
n-46

n-47

40

Mask=00 00 8A 31 10 58 30 80

Figure 13: PACK chunking: a snapshot after at least 48 bytes were
processed

Table 5: Chunking schemes processing speed tested with 10 MB
random file over a client’s laptop, without neither minimal nor max-
imal limit on the chunk size.

Scheme Window Chunks Speed

SampleByte
8 markers

1 byte 32 bytes 1,913 Mbps

Rabin fingerprint 48 bytes 8 KB 2,686 Mbps

PACK chunking 48 bytes 8 KB 3,259 Mbps

SampleByte
1 marker

1 byte 256 bytes 5,176 Mbps

based rolling hash function, tailored for fast TRE chunking. An-
chors are detected by the mask in line 1 that provides on average
8 KB chunks while considering all the 48 bytes in the sliding win-
dow.

Our measurements show that PACK chunking is faster than the
fastest known Rabin fingerprint software implementation [8], due
to a one less XOR operation per byte.

Proc. 8 PACK chunking algorithm

1. mask ⇐ 0x00008A3110583080 {48 bytes window; 8 KB
chunks}

2. longval⇐ 0 {has to be 64 bits}
3. for all byte ∈ stream do

4. shift left longval by 1 bit {lsb← 0; drop msb}
5. longval⇐ longval bitwise-xor byte
6. if processed at least 48 bytes and (longval bitwise-and

mask) == mask then

7. found an anchor
8. end if

9. end for

We further measured PACK chunking speed and compared it to
other schemes. The measurements were performed on an unloaded
CPU whose only operation was to chunk a 10 MB random binary
file. Table 5 summaries the processing speed of the different chunk-
ing schemes. As a baseline figure we measured the speed of SHA-1
signing, and found that it reached 946 Mbps.

32 bits

cmd4

1

len4

12

block size4

up to 16M (large range)

signature4

6 LSB bytes (large range)

cmd2

1

len2

10

block size2

up to 64K

Hint1
signature2

4 LSB bytes

(cont.)
cmd3

1

len3

10

Hint2

block size3

up to 64K

(cont.)

signature3

4 LSB bytes

hint4

(combined chunks)

(cont.)

offset

up to 64K

len1

2

cmd1

0

TCP Option Kind

30

TCP Option Len

40

(cont.)

(cont.)

OFFSET

PRED

Large range

Figure 14: Receiver message example of a large range prediction

6.4 PACK Messages Format
In our implementation, we use two currently unused TCP option

codes, similar to the ones defined in SACK [17]. The first one is an
enabling option PACK permitted sent in a SYN segment to indicate
that the PACK option can be used after the connection is estab-
lished. The other one is a PACK message that may be sent over an
established connection once permission has been granted by both
parties. A single PACK message, piggybacked on a single TCP
packet, is designed to wrap and carry multiple PACK commands,
as illustrated in Figure 14. This not only saves message overhead,
but also copes with security network devices (e.g. firewall) that
tend to change TCP options order [19]. Note, that most TCP op-
tions are only used at the TCP initialization period, with several
exceptions such as SACK [17] and timestamps [13][19]. Due to
the lack of space, additional implementation details are left out and
are available in [22].

7. CONCLUSIONS
Cloud computing is expected to trigger high demand for TRE

solutions as the amount of data exchanged between the cloud and
its users is expected to dramatically increase. The cloud environ-
ment redefines the TRE system requirements, making proprietary
middle-box solutions inadequate. Consequently, there is a rising
need for a TRE solution that reduces the cloud’s operational cost,
while accounting for application latencies, user mobility and cloud
elasticity.

In this work, we have presented PACK, a receiver-based, cloud
friendly end-to-end TRE which is based on novel speculative prin-
ciples that reduce latency and cloud operational cost. PACK does
not require the server to continuously maintain clients’ status, thus
enabling cloud elasticity and user mobility while preserving long-
term redundancy. Besides, PACK is capable of eliminating redun-
dancy based on content arriving to the client from multiple servers
without applying a three-way handshake.

Our evaluation using a wide collection of content types shows
that PACK meets the expected design goals and has clear advan-
tages over sender-based TRE, especially when the cloud compu-
tation cost and buffering requirements are important. Moreover,
PACK imposes additional effort on the sender only when redun-
dancy is exploited, thus reducing the cloud overall cost.

Two interesting future extensions can provide additional benefits
to the PACK concept. First, our implementation maintains chains
by keeping for any chunk only the last observed subsequent chunk
in a LRU fashion. An interesting extension to this work is the sta-
tistical study of chains of chunks that would enable multiple possi-
bilities in both the chunk order and the corresponding predictions.
The system may also allow making more than one prediction at a
time and it is enough that one of them will be correct for successful

traffic elimination. A second promising direction is the mode of op-
eration optimization of the hybrid sender-receiver approach based
on shared decisions derived from receiver’s power or server’s cost
changes.

8. ACKNOWLEDGEMENTS
This work is partially supported by the VENUS-C project, co-

funded within the 7th Framework Programme by the GÉANT & e-
Infrastructure Unit, Information Society & Media Directorate Gen-
eral of the European Commission, Contract 261565. It is also par-
tially supported by NET-HD MAGNET program of the office of the
Chief Scientist of the Israeli Ministry of Industry, Trade, and La-
bor. We would like to thank our partners in Venus-C and NET-HD
projects for their invaluable feedback and insight.

The authors would like to thank the anonymous SIGCOMM 2011
reviewers and our shepherd, Aditya Akella, for their comments and
suggestions that considerably helped us to improve the final ver-
sion.

9. REFERENCES
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachandran,

P. Chitnis, C. Muthukrishnan, R. Ramjee, and G. Varghese.
EndRE: An End-System Redundancy Elimination Service
for Enterprises. In Proc. of NSDI, 2010.

[2] Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

[3] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker.
Packet caches on routers: The implications of universal
redundant traffic elimination. In Proc. of SIGCOMM, pages
219–230, New York, NY, USA, 2008. ACM.

[4] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee.
Redundancy in Network Traffic: Findings and Implications.
In Proc. of SIGMETRICS, pages 37–48. ACM New York,
NY, USA, 2009.

[5] A. Anand, V. Sekar, and A. Akella. SmartRE: an
Architecture for Coordinated Network-Wide Redundancy
Elimination. In Proc. of SIGCOMM, volume 39, pages
87–98, New York, NY, USA, 2009. ACM.

[6] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
et al. A view of cloud computing. Communications of the

ACM, 53(4):50–58, 2010.
[7] BlueCoat Systems. http://www.bluecoat.com/,

1996.
[8] A. Z. Broder. Some Applications of Rabin’s Fingerprinting

Method. In Sequences II: Methods in Communications,

Security, and Computer Science, pages 143–152.
Springer-Verlag, 1993.

[9] Expand Networks: Application Acceleration and WAN
Optimization. http://www.expand.com/
technology/application-acceleration.aspx,
1998.

[10] F5: WAN Optimization. http://www.f5.com/
solutions/acceleration/wan-optimization/,
1996.

[11] A. Gupta, A. Akella, S. Seshan, S. Shenker, and J. Wang.
Understanding and Exploiting Network Traffic Redundancy.
Technical Report 1592, UW-Madison, April 2007.

[12] S. Ihm, K. Park, and V. Pai. Wide-area Network Acceleration
for the Developing World. In Proc. of USENIX ATC, pages
18–18, Berkeley, CA, USA, 2010. USENIX Association.

[13] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, 1992.

[14] Juniper Networks: Application Acceleration. http://
www.juniper.net/us/en/products-services/

application-acceleration/, 1996.
[15] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul. Method and

Apparatus for Reducing Network Traffic over Low
Bandwidth Links. US Patent 7636767, November 2009.
Filed: November 2005.

[16] U. Manber. Finding similar files in a large file system. In
Proc. of the USENIX winter technical conference, pages
1–10, Berkeley, CA, USA, 1994. USENIX Association.

[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018, 1996.

[18] S. Mccanne and M. Demmer. Content-Based Segmentation
Scheme for Data Compression in Storage and Transmission
Including Hierarchical Segment Representation. US Patent

6828925, December 2004. Filed: December 2003.
[19] A. Medina, M. Allman, and S. Floyd. Measuring the

evolution of transport protocols in the Internet. ACM

Computer Communication Review, 35(2):37–52, 2005.
[20] A. Muthitacharoen, B. Chen, and D. Mazi‘eres. A

Low-Bandwidth Network File System. In Proc. of SOSP,
pages 174–187, New York, NY, USA, 2001. ACM.

[21] netfilter/iptables project: libnetfilter_queue.
http://www.netfilter.org/projects/

libnetfilter_queue, Oct 2005.
[22] PACK source code. http://www.venus-c.eu/

pages/partner.aspx?id=10.
[23] N. T. Spring and D. Wetherall. A Protocol-Independent

Technique for Eliminating Redundant Network Traffic. In
Proc. of SIGCOMM, volume 30, pages 87–95, New York,
NY, USA, 2000. ACM.

[24] R. Williams. Method for Partitioning a Block of Data Into
Subblocks and for Storing and Communcating Such
Subblocks. US Patent 5990810, November 1999. Filed:
August 1996.

[25] M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch Global, Cache
Local: YouTube Network Traffic at a Campus Network -
Measurements and Implications. In Proc. of MMCN, San
Jose, CA, USA, 2008.

