
OPENET�

An Open and E�cient Control Platform for ATM Networks�

Israel Cidonyz� Tony Hsiao�� Asad Khamisy�� Abhay Parekh�� Raphael Romyz and Moshe Sidiz

Abstract

ATM networks are currently moving from the experimental stage of test�beds to a commercial state where

production networks are deployed and operated� The ATM Forum PNNI �Private Network to Network Inter�

face� standard introduces an architecture suited for an internetwork which� in principle� can also be used as

an intra�network nodal interface� However� the current PNNI falls short in providing an acceptable solution

due to severe performance limitations in intra�network operation� limited functionality and the lack of open

interfaces for functional extensions and services�

OPENET is a common� open and high�performance network control platform based on performance and

functional enhancements to the PNNI platform� It is designed to address the issues of interoperability �being

vendor independent�� scalability �in terms of network size and volume of calls�� high performance �in terms of

call processing latency and throughput� and functionality� OPENET is mainly an intra�networking extension

to current PNNI� It is compatible with PNNI in the internetwork environment where large networks must be

partitioned according to natural topological or organizational boundaries�

The major novelty of the OPENET architecture �compared to the current PNNI� is its focus on network

control performance� A particular emphasis is given to the increase of the overall rate of connection handling�

to the reduction of the call establishment latency and to the e�cient utilization of the network resources�

These performance enhancements are achieved by the use of a native ATM distribution tree for the dissem�

ination of utilization update� light�weight call setup� take down and modi�cation signaling� the use of fast

setup and takedown with the future option to implement them in hardware� and extensive use of caching and

pre�calculation for route computation� OPENET also extends PNNI in terms of functionality� It utilizes a

new signaling paradigm that better supports fast reservation and multicast services� a rich control communi�

cation infrastructure which enables the development of augmented services leveraging the existing functions�

messaging system and information of the network control platform�

y Sun Microsystems Labs� ��� San Antonio Rd�� Palo Alto� CA ������

� MMC Networks� Inc� Sunnyvale� CA�

� FastForward Networks� San Francisco� CA�

z Department of Electrical Engineering� Technion� Haifa �	���� Israel�

�This work was performed in and sponsored by Sun Microsystems Labs�

�



�� Introduction

Network control is the set of mechanisms and processes that handles the routing� establishment� admission�

modi�cation� maintenance and termination of connections� The actual information that is exchanged

among end�users is transparent to network control� E�cient network control is critically important in the

performance of high�speed real�time applications� and is a key factor in justifying the cost of evolving ATM

technology ���� New interactive applications �such as browsers	 open and terminate� in quick succession�

many connections of di
erent types such as text� image� video� audio� The fast handling of large number

of connections is likely to be essential to the success of ATM� Another important requirement of network

control is that it enables the network to operate at high levels of e�ciency� so that given a topology and

link capacities� many calls can be supported with acceptable levels of quality of service� A close look at

network control architectures reveals that low�level functions such as the dissemination of topology and

utilization updates are extremely important in ensuring e�cient and reliable network control ����

The quality of the network control platform is measured by its performance� reliability and functionality �

Performance is measured by the network control throughput� i�e�� the maximal rate at which the network

can process new calls� the call processing latency and the link utilization e�ciency� Network control

reliability is judged by the way faults such as link and nodal outage� control message errors and soft

errors are handled� Since the ATM network control actually reserves resources such as bandwidth and VC

identi�ers� unused resources must always be expeditiously released after call termination �including call

termination that is forced by an outage	�

The network control functionality is judged by the level of service that the network control provides

to users� Functions such as QoS negotiation� supporting multi�level call priority� third party setup� policy

routing� mobile naming support and many more� may be needed by particular network owners� For exam�

ple� a company that provides a personal �mobile	 communication service via its private ATM terrestrial

infrastructure must include on�line e�cient tracking of mobile users as part of its network control� This

calls for the ability to add functions to the network control according to the intended network use� utilizing

an open interface through which such functions can be added

In this paper we present the OPENET architecture designed and implemented at Sun Microsystems

���� OPENET is an open and high�performance network control platform based on performance and

functional enhancements to the PNNI standard �
�� It is designed to address the issues of interoperability

�being vendor independent	� scalability �in terms of network size and volume of call establishment and call

property changes per link or switch	� high performance and functionality� In addition� OPENET provides

the ability to e�ciently integrate customer speci�c network control functions and value added services

through open interfaces �APIs	 which enable the programmer to use the basic communication functions as

well as the information resources of OPENET�

Performance critical elements are designed with the option to port them to hardware implementation

in the future� Such elements are designed using light�weight and simple protocols and as much as possible

using unicell messages� In addition� OPENET can be easily partitioned among multi�processors �such as

the combination of link� switch and external general purpose processors	� OPENET is an extension to

PNNI so it is compatible with PNNI in the internetworking environment where large networks need to

be partitioned according to natural boundaries� Finally� OPENET makes several functional improvements

over PNNI such as the ability to setup whole multicast trees as a single routing and setup operation� the

�



ability to negotiate setup parameters with the network and an e�cient mechanism of fast modi�cation of

existing connection parameters without terminating and setting it up again �on the �y reservation	�

�� Key Design Ideas and Rationale

OPENET can be viewed as both a complement and enhancement to PNNI� PNNI was originally targeted

at inter�networking control �and therefore seems to fall short in term of e�ciency for intra�network control	�

OPENET is targeted at intra�networking control� Within a network �such as a campus intranet backbone	

connection setups are expected to be rather frequent� Therefore� network control e�ciency is a key design

issue of OPENET� In addition� OPENET is focused on being an open architecture� by providing an

extensive support for new services and network control extensions through open APIs�

E�ciency of network control is measured by three basic quantities� �i	 Call throughput which describes

the maximal rate at which the network can process new calls or change the parameters associated with

existing calls� Larger throughput implies that more control operations can be performed per unit of time� or

alternatively� more users can be supported� �ii	 Call latency which expresses the time elapsed between the

request to establish a call or change its parameters and its completion� Smaller latencies yield faster setups

and are key to modern applications �multimedia� web� network computing	� �iii	 Resource utilization

e�ciency which measures how well the network control exploits the available resources to satisfy user

requests� This quantity can be expressed in terms of blocking probability or overall �maximum	 network

revenue�

Figure �� Network Connection Control Cycle�

Let us examine the typical setup sequence of operations of a modern control platform such as PNNI

�
�� NBBS ���� APPN ��� and OPENET� These networks are typically based on maintaining at every

�



network node an updated view of the network topology and load� They employ a mechanism known as

link state algorithm ���� to maintain and update this view via dissemination of local information �topology

and utilization update ���	� We describe the process of establishing connections and updating the routing

data�bases as a connection control cycle depicted in Figure �� Our starting point is the event of a user

requesting to open a connection� the destination address is �rst resolved in order to locate its hosting

switch and port �step �	� Next a route is calculated using the local topology view �step �	� Then� an

attempt to setup the call is made using a distributed setup procedure �setup signaling	� Note that since

route calculation can be done concurrently at several sources there is a possibility of �collision� among

concurrent request which will result in some of the resources taken away before the setup signaling can

lock them� Therefore� availability of resources is checked again �step �	 and then reservation is con�rmed

and locally setup �steps 
��	� If any of the previous steps fails� the connection is rejected� At that point

if some link utilizations have changed enough to trigger a topology database update� a broadcast action is

taken �steps ���	� When this information is recorded at all nodes and is ready to be used for other call

setups �step �	 we have completed the process of setting up the call including the process of making the

network fully updated again for the route calculation of new calls� Call termination process is similar but

most of the functions �such as route calculation� admission etc�	 are skipped�

The number of operations �or CPU cycles	 which are required to process all calls de�nes the call

throughput of the network control platform� The time it takes to pass from step ��	 to step ��	 is the call

setup latency� The time it takes to complete the whole cycle �steps ��	 to ��		 and the accuracy of the

triggered update have a major impact on the network resource utilization e�ciency� This is because the

fast completion of the control cycle� reduces the �collision� time window among di
erent calls starting at

di
erent nodes which attempt to utilize the same link resources� The accuracy of the update increases this

e�ciency in particular at high loads� by enabling sources to �squeeze� links up to the maximum usage�

Similarly� the route computation process quality has a major impact on the maximal number of calls that

can be �t at the same time� Consequently� in order to improve �all three components of	 the network

control e�ciency� the control cycle should be processed as fast as possible� utilizing as little CPU cycles as

possible� while keeping the accuracy and promptness of updates and the quality of the routing procedure

at high level�

Our general approach in designing OPENET is �optimistic�� namely� we assume that most of the time

the network is reliable and control messages do arrive at their destinations� This is true since topological

changes �such a link failures	 are infrequent compared to the time scale by which control tasks are com�

pleted� Based on this assumption� we attempt to optimize the system for the most frequent events� so that

most of the time� the control will be very e�cient� Handling exceptional and rare events� such as loss of

control messages or their out of order arrivals �which are addressed in our design	 in a very e�cient way

is often very complex� In our design we trade performance for simplicity in such rare cases�

OPENET uses source routing i�e�� the source computes the entire route based on the data available

to it� This relieves intermediate nodes along the path from performing additional route computations�

The quality of the route clearly depends on the accuracy of the global topology and utilization data

available at the source� OPENET delivers this data e�ciently and promptly� The premise of this e�ciency

is the separation of topological and utilization data� To update the topology database at each node�

OPENET uses an OSPF�like algorithm that essentially �oods any message carrying topological change�






Since topological changes are infrequent and need to overcome unpredictable topology outages� �ooding

is a reasonable approach� However� utilization updates are very frequent� Therefore� use of �ooding is

ine�cient here because of the following� First� �ooding implies that nodes get the same information many

times over multiple links �actually over all links	 and therefore waste a large amount of CPU cycles� Second�

the forwarding of the �ood message is done in software at rather higher level of the protocol �as topology

sequence numbers need to be checked	 resulting in excessive delays� Third� since the forwarding requires

software involvement the node needs to react as fast as possible to each �ood message which results in a large

number of interrupts �and therefore CPU cycles	� Batching such updates �say� polling them periodically	

will introduce additional latency in the �ood progress� Last� PNNI or OSPF �ood requires the use of large

messages �in PNNI it is several hundreds bytes	 despite the fact that the utilization information is fairly

short� Hence� in OPENET we devised a novel construct� called the distribution�tree� that is a multi�point

to multi�point tree on which utilization updates are distributed �see Section���	� The distribution�tree

proves to be a very e�cient mechanism to distribute utilization information as it allows using single cell

update messages� the use of hardware forwarding and the ability to batch updates together�

To further expedite route selection at the source and reduce setup latency� OPENET uses extensively

route caching � Each source computes and caches continuously best routes for several QoS classes� This

implies minimal on�demand route computation and short waiting before the source route can be used�

An additional key design issue in OPENET insisting on light�weight signaling and protocols� This is

important for achieving the goals of low latencies and low computational overhead per call� It uses single

cell messages to signal frequent operations� such as reservation changes and connection take down� Error

recovery is mostly performed on an end�to�end basis rather than hop�by�hop to reduce the number of costly

timer operations for a single call setup or change� In particular� OPENET handles the modi�cation of an

existing call parameters not as a new call but as a fast reservation operation along the existing VC� thus�

eliminating extra operations such as route computation and the process of source routing� When hop�by�

hop error recovery is required for correctness �in case of connection take�down	� special attention is given

to its e�cient implementation using uni�cation of the timer operation for all take�down processes taking

advantage of the fact that no ordering need to be maintained across take�downs of di
erent connections�

�� OPENET Network Model

OPENET views the network as a collection of nodes interconnected by high�speed links and also attached

to external users� A node is comprised of two functional parts� the Switch� and the Control Point �CP	�

The switch contains a switching fabric and its low level control� typically implemented in hardware� The

CP is responsible for all other control functions such as initializing and maintaining the switching tables and

coordinating activities with other switches� The CP is typically implemented in software� CPs exchange

data with their peers through designated VC termed control VC�s�� Typically �but not always	 transfer

of information to non�neighboring CPs is accomplished hop�by�hop over single link control VCs�

���� CP Functions

The CPs perform those functions necessary to make a group of nodes operate as an integrated network�

Adopting the PNNI terminology we distinguish between OPENET signaling which is the set of protocols

used to setup� takedown and maintain connections and OPENET routing which is the set of messages and

procedures used for computing the routes and gathering the information necessary for this computation�

�



������ OPENET Signaling

User Support� The CP is responsible to interpret user requests received via the User Network Interface

�ATMF UNI or Q���� ���	� and translate them into internal actions that provide the user the service it

requested� OPENET also supports an extended set of functions we have found important �Section ���	�

VC Set�Up� Once a user request is received and a plausible route is computed an attempt to establish

the connection is made� A special type of VC is the point to multipoint multicast VC� Such VCs are

organized in a tree structure and hence present additional complexity in its computation and in setting it

up� OPENET provides several new useful setup functionalities� OPENET allows the user to specify a range

of acceptable bandwidth and returns the highest the network may support� It allows the establishment of a

VC from a point which is not the source �third party setup	� It allows the computation and establishment

of a complete multicast tree as a single operation� whereas the current ATM standard only supports adding

connections one at a time� OPENET also provides new multicast connections �termed distribution trees	

which allow multiple sources and destinations�

VC Take�Down� Once the VC is no longer needed �as a result of user indication or a failure	� it should

be taken down e�ciently and orderly so that released resources may be reallocated as fast as possible�

VC Maintenance� This function typically manages changes in the connection allocated resources during

the VC�s lifetime� such as� an increase or decrease of the VCs bandwidth parameters�

������ OPENET Routing

Topology Update� OPENET conducts the computation of the complete route at the source� Therefore�

each node maintains a global view of the complete network and this view is maintained using a link state

update algorithm�

Utilization Update� To calculate e�cient routes every node maintains a utilization view of the network�

i�e�� the level of bandwidth reservation for all QoS classes of every link in the network� OPENET e�ciently

updates this view using an ATM distribution tree described later in detail�

Route Computation� In order to decrease the setup latency� OPENET employs extensive route caching

so that calls do not need to wait for a complete route computation� This also enables the CPs to utilize

otherwise idle periods for the pre�computation of such routes�

���� Connection Types

User and control information are carried over connections� The current ATM standard recognizes two

types of connections� A point to point connection �unicast	 where a single source �calling party	 exchanges

information �information may �ow in both directions	 with a single destination �called party	� A point to

multi�point �unidirectional multicast	 connection over which a single source may send the same cells to

multiple destinations� Such a connection is established by maintaining a directed tree structure �termed

a destination tree	 over which cells are being sent from the root to the leaves� At every junction in the

tree the switch must copy the each cell to multiple output ports and perform a VC label swap operation

speci�c to each output port� In both connection types only a single source is multiplexed at a receiver�

In ���� another possible structure we term a source tree �termed sink tree there	 is described� This

connection carries multiple streams of cells from multiple sources to a common destination over the same

�



tree and its VC labels� This implies that an adaptation layer that relies on the VC value only �AAL�	

cannot be applied to a source tree� Therefore� the tree can be used to deliver unicell messages or support

an adaptation layer that supports sub�VC multiplexing �AAL��
	�

A distribution tree is a multicast construct with several sources and several destinations� The number

and identity of the sources and destinations does not have to be the same� A cell sent by any of the sources

on the distribution tree will arrive at all the designated destinations� Similar to the destination tree case� a

distribution tree may be used for unicell messages or under an adaptation scheme which supports sub�VC

multiplexing� In the following we describe two approaches for establishing a distribution tree� the load�

balanced tree and the pivot based approaches� These trees are used to facilitate the utilization update in

OPENET� In addition they are o
ered as a new user service�

������ The Load�Balanced Distribution Tree

A tree spanning all of the sources and destinations is constructed such that each link of the tree is bidi�

rectional� Thus� two VCIs are de�ned between any two neighboring nodes of the distribution tree�one in

each direction� Cells are then broadcast on this tree� i�e�� each node associates every incoming VCI of the

destination tree to all the outgoing VCIs on the links of the distribution tree except in the return direction

�i�e�� excluding the link of the incoming VCI	�

As an example consider the network of Figure �� In the example the circles are nodes whose names are

marked with upper�case letters� the bold lines are the links of the designated tree and the port numbers

are marked with numerals �by convention the local CP is always designated as port � and not shown in the

�gure	� The VC tables of all the nodes appear in Figure �� For example� a cell injected to the network at

node C �port �	 is switched to both port 
 �towards node F	 with a VCI ��� and port � �towards node E	

with a VCI ��� This cell� upon arrival at node E �on port �	 with that VCI will be forwarded appropriately

towards nodes A and B and towards node�s E own CP� As is evident from the example every cell will

traverse every link of the tree exactly once thereby balancing the load on these links�

������ A Pivot Based Distribution Tree

In some cases� it may be bene�cial to set up the distribution tree about a specially designated node

called the pivot� Each source forwards all of its cells to the pivot� which then forwards these cells to each

destination� Thus� the pivot�based tree is composed of a combination of a source tree �described in ���	

and a destination tree �a regular ATM multicast tree	 in which the same node serves as the root node of

both trees� A special mapping of the VC labels at the root switch directs the tra�c multiplexed from all

sources �over the source tree	 to be multicast over the destination tree to all its destinations�

Consider a set of sources s�� s� � � � � � sn and a set of destinations d�� d� � � � � � dm� Choose a pivot switch

p and construct two directed trees one consisting of the switch p along with all the si switches �the source

tree	 and the other consisting of the switch p with all the di switches �the destination tree	� The source

tree is directed towards p and the destination tree is directed away from p� The construction of the trees

is done according to the normal way of VC construction� Thus� a cell entering at any of the switches si

carrying the VCI of the source tree will end up at the pivot switch� Using the multicast capability� every

�



Figure �� An example of a utilization tree�

cell entering the pivot with the VC identi�er of the destination tree will be switched and distributed to all

destinations di� By appropriately setting the VC�table at the pivot so that the source tree VCI and the

destination tree VCI are linked together� the distribution tree is constructed� When the same nodes are

both sources and destinations it may be simpler to construct a single tree that serves both as the source

and destination trees�

A drawback of the pivot�based approach over the load�balanced tree approach is that the tra�c load

on the links is not completely balanced� For instance� in the example above if node C transmits a cell it

will wind its way to node E �the pivot	 and back towards node F thus traversing the link CE twice� once

in each direction� This happens for every link shared by the source and the destination trees�

�� Topology�Utilization Update and Call Routing

Among the key OPENET novelties is the way it handles utilization update and route caching� Therefore

our detailed description will focus on these two subjects �rst�

The topology and utilization update mechanism is designed to maintain a replicated database at all

CPs so as to enable each CP to compute an e
ective route for new arriving calls or whenever rerouting is

necessary� The database must therefore include all the relevant information for such routing and potentially

for other network control functions� Examples of information items included in the database are� the set

of switches� the set of communication links and the manner in which they are interconnected� the ID of

CPs� link and switch capacities� link and switch current utilization levels� etc� Other information� which

we will term attributes� can also be included� These might be information regarding reliability� cost� length

or security properties of links and switches as well as user reachable addresses or domains �in the absence

of other directory services ������	�

�



Input Designation Output Designation

P VCI P VCI P VCI

� �� � �� � �

� �� � �� � �

� �� � �
 � �


Input Output
Designation Designation

P VCI P VCI

� �� � ��
� �� � ��

Input Designation Output Designation

P VCI P VCI P VCI

� �� � �� 
 ��

 �� � �� � ��
� �� � �� 
 ��

Input Output
Designation Designation

P VCI P VCI

� �� 
 ��

 �
 � ��

Input Designation Output Designation

P VCI P VCI P VCI P VCI

� �� � �� � �� 
 ��
� �� � �� � �� 
 ��

 �� � �� � �� � ��
� �� � �� � �� 
 ��

Input Output
Designation Designation

P VCI P VCI

� �� � ��
� �� � ��

Figure �� VC Tables for the load�balanced tree example�

In OPENET� the contents of database are logically divided into quasi�static and dynamic portions� ac�

cording to the expected rate of its change� Quasi�static information is that which changes quite infrequently

and is related to topology changes such as when a failure occurs or a planned network recon�guration takes

place� Dynamic items are those which change frequently� for example� with the establishment and termi�

nation of connections�

Our �optimistic approach� to network control optimizes the system for the most frequent events and

trades performance for simplicity in the case of exceptional and rare events� Therefore� for performance

reasons� we have separated the mechanisms for exchanging quasi�static information �topology update	 from

that of exchanging dynamic information �utilization update	� The utilization update is optimized for both

update�latency and computational overhead by assuming a �xed topology� This results in a lightweight

procedure that can sustain a higher rate of updates at a low latency� For the topology information we

adopt a conservative and standard mechanism that can cope with topological changes�

In the normal mode of operation� the quasi�static information is synchronized and the utilization update

mechanism may assume a �xed topology� With such a setting we use a distribution tree� thereby making

use of hardware based ATM multicast to accomplish the task of utilization update� This update functions

properly as long as no change occurs that disrupts the distribution tree� Thus� most topological changes

�those which do not impact the multicast tree	 will have no e
ect on the utilization update mechanism

and the topological update mechanism ensures that these changes are disseminated to all CPs�

When a major topological change occurs that disrupts the utilization update mechanism more massive

operations must take place� The topology update mechanism is activated and disseminates the updated

information to all CPs� Once this is done� the utilization update mechanism must be set�up anew� and only

then can normal operation resume� To minimize the impact on the utilization information promptness�

topology update messages also include utilization information for the items reported�

Since OPENET is designed as a PNNI extension� we use the standard PNNI topology update methods

which is based on OSPF ��������������� It is implemented using a reliable hop by hop �ooding algorithm for

�



the propagation of the topology database items� Because the OSPF method is well known and documented�

we focus the rest of this section on the newly devised utilization update mechanism�

At both PNNI and OPENET� a single CP �termed peer group leader � PGL	 is selected to perform the

logical peer group functions of PNNI and other OPENET functions such as the manager of the distribution

tree� The leader election process in both platforms uses the topology update procedure� Our algorithm

requires much fewer messages than the original PNNI leader election algorithm� The algorithm use the

Propagation of Information with Feedback �PIF	 algorithm described in ���� and its details appear in ����

���� Utilization Update

The utilization update is an iterative process triggered by a major change in a utilization�related database

item� Clearly� the latency of this information update process re�ects on the currency of the database and

hence the quality and promptness of the information used for call routing� Similarly� the maximum rate of

the utilization updates that the system can process has a major impact on the precision of the information

maintained in the nodes as well as on the network size that can be supported� As the precision and number

of links increase so does the rate of utilization update that needs to be handled by each node�

Using a �ooding algorithm of the OSPF type is ine�cient for utilization update purposes� A �ooding

algorithm implies that update messages are received in duplicates from all neighbors entailing redundant

overhead� It also entails a store�and�forward operation at every hop which forces the protocol to read

with no delays each received update in order to check whether forwarding is required so that information

dissemination is not delayed unnecessarily� This excludes the possibility of processing a large number of

duplicates in batch �since doing so will increase the latency of the update	� Therefore� our architecture uses

a network�wide spanning distribution tree for the task of utilization update �see Section ���	� The same

distribution tree can be used by all nodes to broadcast local changes to all others using unicell updates�

Such a scheme uses native ATM cell�switching� delivers only a single copy of the information to each CP�

utilizes the switch hardware multicast where possible and uses a small and �xed amount of VCIs� Since

no forward operation is required at the CP it also allows batch processing of multiple utilization messages�

One might add that a single network�wide spanning tree is advantageous over� say� a collection of trees for

its scalability and management properties�

Utilization update is triggered whenever there has been a substantial change in the utilization from the

values previously reported or if enough time has elapsed since the last update� The method to quantify

a signi�cant change is based on percentage change of the available bandwidth over a link� The rate of

utilization update is expected to be orders of magnitude higher than the rate of the topology update� On

the receiving side� the rate of utilization updates received can burden the receiving CP� This statement

addresses the fact that handling each utilization update individually and instantaneously may result in

too many system calls �interrupts	 and hence an unacceptable nodal overhead� Periodic polling of the

incoming cells queue �which is identi�ed by a particular VC value	 appears to be a better practice in terms

of system performance�

We have quanti�ed the major impact of utilization update mechanism on the ability of the CP to

process utilization changes� When a CP processes a communication interrupt it needs to �rst service the

interrupt routine� transfer the data to main memory� invoke basic driver processing� perform a context

switching to the appropriate process �say �link state protocol�	 handle the message and send a possible

��



response� Typical numbers for this process are �ms �Sparc �	 and 
ms �DECStation	��
�� Recall that a

switch embedded CP may not be the most powerful RISC engine�This �ood update processing time sets a

limit to the number of �ood updates that can be processed to somewhere around hundred or less �taking

into account that other processes needs to be run as well	�

We have simulated the update rate of the link triggering update mechanism of PNNI in a network of

�� nodes and �
� links at average loads of �������� Our calls were divided to � classes in terms of calls dura�

tion ����� hours� � minute � � hour� and ��� second to �� seconds� assuming uniform duration distribution

within the range	 and bandwidth range �����Mbps� �
Kbps���Mbps and ����Mbps� respectively	�

ACR PM Load
��� ��� ��� ��� ���

��� ��
�� ����� �
��� �
��� �
���


�� ����� ����� ����� ����
 �
���

��� ����
 ����� ����� ����� �����

��� ����� ���
� ��

� ����� ����


��� ����� ����� ����� ����� �����

��� ����� ����� ����� ����� �����

Table �� PNNI � Average updates rate� per link per second�

The classes represent backbone connections �PVCs and VPs	� real�time video and audio and bursty

data connection �WWW� ftp� NFS	 respectively� The distribution among classes was ����� ���� and ����

respectively� PNNI uses an incremental reporting algorithm �using the parameter ACR PM	 which triggers

a new update only if the change in the available bandwidth �ACR	 since the last update is at least

ACR PM� �however not less than �� of the raw link capacity	� The results of Table � are in terms of

average number of updates per link per second� For example for a load of ��� and an ACR PM of ���

the total number of updates triggered is ���

� � �
� � ����� If some of the backbone switches in the

network have a link degree of � this amounts to the reception of 
�� updates�second on average� For a

more accurate �but still quite coarse	 ACR PM���� the number rises to ���� Finally� recall that the

average is not the worst case load� Given the possible correlation between the updates �a large call is being

setup or released via multiple links	 there is a non�negligible probability �����	 for periods of update rates

which are twice or more higher �see Figure 
	� Therefore� a clear conclusion is that the PNNI utilization

update mechanism is very ine�cient and might result in periods of excessive CP loads even under moderate

network sizes and update accuracies� A clear evidence is the recommendation of the PNNI standard to set

ACR PM at the level of ���� which results in almost no meaningful utilization information� In contrast in

OPENET� utilization update is received only once at a node and can be batched at any granularity level�

Therefore� no matter how many such updates are received the CP may deal with all updates at its own

convenient times�

Utilization update is performed over the distribution tree structure� The elected leader of the peer group

is responsible for setting up and maintaining the distribution tree� When a topological change that a
ects

the connectivity of the distribution tree occurs �such as link or node failure	� the leader will send a new

tenure message �de�ned in PNNI	 to all other nodes within the peer group� Every node that receives this

��



Figure �� Utilization rate distribution�

message will locally release the current distribution tree thereby stop the forwarding of cells on this tree�

Since the tenure message is sent using a reliable �ooding mechanism� every node in the peer group will

eventually receive this message and release the distribution tree� After the leader sent the tenure message�

it will compute a new distribution tree and set it up�

���� Route Computation

Route computation is used in the setup process of new connections or the rerouting of existing connections�

It is performed at the source CP of a connection or by another CP for third party setup� Its goal is to

obtain a low cost �in terms of administrative weight	 simple path �unicast	 or tree �multicast	 in the

network which meets the bandwidth and other QoS constraints �such as delay and loss	 of the connection�

A setup request for a unicast connection contains the bandwidth requirements and QoS class of the

connection in both directions� The bandwidth requirements �i�e�� the peak and sustainable cell rates	 along

with the current link state parameters �i�e� the ACR� CRM and VF	 are used by the GCAC algorithm in �
�

to determine whether a given link can be considered in the route computation� The QoS class determines

the values of the MCTD� MCDV and MCLR� parameters� We use the The MCDV and MCLR� attributes

of a given link to determine whether this link can be considered in the route computation� The route

computation then proceeds by �nding the minimum weight path �according to the AW parameter	 under

the constraint that the sum of the MCTDs along the path does not exceed the requested MCTD of the

connection� A fast setup process is extremely important for the success of ATM networks as discussed in

earlier� An on�line computation of the route upon the receipt of a setup request can extensively delay the

setup process� Hence� our route computation process described below� consists of an o
�line computation

��



Figure 
� Route computation instances�

of routes� where the routes for di
erent QoS classes and route capacities are pre�computed and stored in a

route database� This allows for background computation of routes� using idle processor periods for route

computation� O
 line route calculation is particularly advantageous for a network with a high number of

calls each requesting only a small portion of typical link capacities� �In a well designed network� the number

of calls requesting a large portion of the capacity cannot be too large	� In this case� it can be assumed

that the same routes can be used multiple times as single calls do not saturate the links immediately� It

might also be reasonable to use both precomputed routes for frequent small bandwidth calls as well as on

demand computation for large bandwidth calls�

OPENET computes �� di
erent instances of routes divided according to three bandwidth ranges and

the QoS class of calls as depicted in Figure �� Computation starts generally from high�bandwidth calls

�as these routes can also be used to carry low bandwidth call	 to low�bandwidth ones� Arriving calls

are matched to one of the route instances� The cached route is checked and validated against the latest

topology and utilization data� If no valid route is found� an on�demand computation is carried on for that

call�

Another aspect of the routing algorithm is the way it adapts to changes of topology and utilization�

OPENET has taken the approach that a single instance of route computation will not be interrupted in the

middle due to new topological changes �preventing �livelocks� as a result of excessive updates	� Instead�

the current computation instance will be completed and only then the new topology information will be

integrated� The computation will continue retaining the same round robin order until all instances are

derived using the new parameters� In general� routes for high bandwidth calls are always computed �rst�

The latter approach guarantees that even in a frequently changing network� the routing algorithm will be

able to make progress and all QoS classes will be served by it�

Our algorithm is a heuristic one based on several applications of Dijkstra�s shortest path algorithm each

��



with a di
erent set of edge weights� Each application looks for an optimal set of paths with respect to

one criterion using the others as constraints� The execution of the complete algorithm results in a set of

feasible routes in terms of the delay requirements� This set of routes is stored as an ordered set of subtrees

�which is a natural outcome of Dijkstra�s algorithm	�

Let DCBR denote the delay constraint of CBR connections and let Wi and Di denote the weight and

delay of link i� respectively� Let W denote a vector whose components are Wi� Similarly denote D� Denote

by DIJ �X	 the application of Dijkstra�s algorithm to our network when the link weights equal X � Let

DIST �T� X	 be a vector whose i�th component is the distance of node i from the root of tree T when X is

taken as the link�weight vector of T � The algorithm uses a scalar constant c � � and proceeds as follows�

�� Compute T � � DIJ �W	� W
�
� DIST �T�� W	� D

�
� DIST �T�� D	� Remove all nodes i for which

D�
i � DCBR�

�� Compute T � � DIJ �WD	� W
�
� DIST �T�� W	� D

�
� DIST�T�� D	� Remove from T � all nodes i for

which D�
i � DCBR �those cannot be assigned a path in this round of computation	 or those for which

W �
i � c�W �

i �

�� De�ne X�p	 �
p

max
i
fW �

i g
W �

��� p	

maxi fD
�
i g
D�


� Perform the following for p � ���� ��
� ����

Compute T p � DIJ
�
X�p	

�
� W

p
� DIST �T p� W 	� D

p
� DIST �T �� D	� Remove from T p all nodes i for

which D�
i � DCBR or those for which W

p
i � c�W �

i �

All destinations not included in any of the trees are considered non�reachable under the current con�

straints� For routing to destination node i chooses the �rst path found in the trees as T p varies from �

down to ��

Clearly� a better algorithm would perform step 
 by searching more values of p at a higher computation

cost� For bidirectional connections where both directions use the same undirected path� we modify the

above algorithm in the following manner� In step � we replace the link vector W by a vector whose

components are the sum of the link weights in both directions� The de�nition of X�p	 in step � uses the

maximum value of both directions�

For ABR and UBR connections the route computation is less complex due to the fact that no additive

constraints are required� In this case the shortest path algorithm with links weights equal to the admin�

istrative weights will do �after trimming those links where the loss� rate and other constraints are not

met	�

In the multicast case we �rst construct a subgraph of the network which contains only those links which

can support the requested bandwidth and QoS requirements� An approximated minimum weight Steiner

tree which contains the source and the destinations is then computed �see� e�g� ����	� with links weights

equal to the sum of the weights in either or both directions� Then� the delay feasibility of the tree is

checked� and if unfeasible we construct a shortest path tree �using the delay as the weight parameter	 from

the source to the destinations using a collection of individual unicast routes as explained earlier�

�




�� OPENET Signaling

���� Forwarding modes

OPENET de�nes low level communication mechanisms termed forwarding modes� by which CPs forward

control and other messages to other non�neighboring CPs� The source route and VC traversal forwarding

modes described in this section allow a CP of� say� switch s� to forward messages to the CPs of switches

s� � � � � � sn in a given order� The forwarding modes are used by both OPENET signaling as well as other

network control applications�

������ Source Route Forwarding Mode

In the source route forwarding mode a message traverses a path from CP to CP according to a route that

is explicitly contained within the message ����� The path is described by a sequence of local link�port IDs�

CP along the path not only forwards the message to the next CP along the path but also performs an

individual function that is also indicated in the list� Such a message is used� for example� by the VC set�up

mechanism in which the typical function would be bandwidth reservation� Source route forwarding is also

used for general datagram delivery between CPs� i�e�� delivery of messages without connection setup�

Not all CPs along the path have to perform the same function nor must the path be a simple one� Thus�

for example� one can construct a path from� say� CP� to CP� and back to CP� in a way that di
erent

functions or none are performed by the CPs in the forward and backward direction� For example� one

can use such a message for the construction of a VC in which the initiator of the setup operation is not

the source of the VC �third�party setup	� The source routing mode also allows to trace back the path the

arriving message took� The reverse path is accumulated by replacing the current forward path port by the

backward ones at each hop� In this case� an arriving message can be responded to over the same path it

has arrived on�

������ VC Traversal Forwarding Mode

In the VC traversal forwarding mode a message traverses a path hop�by�hop from one CP to another along

the route of a previously established VC� i�e�� the control message is forwarded from a CP to a CP along

the VC route without having its cells being carried over that VC� A VC traversal message can traverse

any type of VC� including multicast VCs� Since the CP keeps a version of the local VC table�s	� it is

possible for CPs to exchange control messages along VC path by examining the entries of its VC table and

swapping the appropriate VC identi�ers� emulating in software the actions performed by the switch itself�

The method of forwarding control messages from a CP to a CP along the path of an existing VC

described above is referred to as the Forward VC Traversal or simply VC Traversal � VC traversal can

also be carried in the opposite direction based on the output labels� This is referred to as the Reverse VC

Traversal � The reverse VC traversal method might be less e�cient since a search through an unsorted table

may be necessary� The reverse VC traversal method is sometimes necessary to forward control messages

along a unidirectional connection or a partially established connection �see below	�

A VC traversal message can also traverse the tree of a multicast connection in a way similar to traversing

the path of a unicast connection� The di
erence here is that each entry in the VC table of the CP may

refer to more than one output port�label pair� depending on the structure of the tree� It is also possible

��



to use the forward VC traversal mode to send control messages back to the root for an established source

tree�

���� Connection Control and Maintenance

The main tasks associated with connection control are connection setup� connection take down and con�

nection maintenance� The OPENET connection setup uses the source route forwarding mode and includes

the update of routing tables and the bandwidth reservation along the chosen route� It utilizes end�to�end

error recovery in order to lower the overhead in typical error�free cases� The connection can be either a

unicast� a single source multicast� or a multi�source multicast �distribution tree	� Connection clearing �take

down	 is used for bandwidth and label release upon the termination of calls� or upon topological outages

that disconnect the connection� Connection maintenance is needed to modify the parameters of existing

connections and to insure �soft state� operation of the network to release of unused resources in cases of

undetected errors� Call signaling have a major impact on the overall performance of the system� OPENET

uses light�weight protocols based on the optimistic approach guideline� In the following we outline the

main ideas behind these operations� more details can be found in ����

������ Unicast Connection Setup and Clearing

A unicast connection setup is initiated by a user by sending to its CP a UNI SETUP message ��� that

includes the destination address� the class of service it requires� and other parameters as speci�ed by the

standard� The CP maps the request into one of the internal classes of service� In OPENET tra�c intensity

is represented by two values� MAX and MIN� indicating a region of acceptable values� One of the main

reasons for such a setting is allowing the user to make more �exible decisions based on network state� The

CP selects a feasible route for the corresponding class of service and requested bandwidth �as described

in Section 
���	 and constructs an N SETUP message �de�ned by OPENET ���	� using the source route

forwarding mode� The message contains� in addition to its type and route� the MIN and MAX parameters�

the function to be performed by every link and label �elds that are swapped by the corresponding CPs

along the route� It also carries the relevant end�to�end parameters that were part of the user UNI SETUP�

The N SETUP message is then forwarded downstream from the source CP to the destination CP� Each

CP that receives the N SETUP message checks whether the corresponding switch can accommodate the

connection� If the available bandwidth �termed M	 for the requested class is greater than the current MAX

value� a quantity MAX of the bandwidth is reserved� and the N SETUP message is forwarded to the next

CP on the route� If M is between the MIN max MAX values� then a quantity M is reserved and N SETUP

is forwarded with the MAX value being set to M� If M is smaller than the MIN value� then the connection

setup process is aborted and the connection clearing process is started from this point back to the source�

One of the functions of the set�up procedure is to set the appropriate VC identi�ers� To that end the

N SETUP message carries two labels� a forward and a backward one� corresponding to the two directions

of the VC� Upon receiving the message� the CP records the backward label that appears in the message

and chooses one �unless one already exists	 for the backward direction which it puts in the message before

it is being forwarded� The forward label is also included if it is already available in the VC table �used

in cases of N SETUP retransmissions so as not to setup the same connection twice	� At this point these

labels are logical and are used only for VC traversal� They will become physical labels upon the receipt of

��



the N SETUP ACK�

When an N SETUP message arrives at the destination CP� it sends a UNI SETUP to the destination

host and generates a N SETUP ACK message that is forwarded upstream back to the source CP along

the same route of the established connection� The N SETUP ACK message� which is of the forward VC

traversal type� contains the �nal MAX value contained in the N SETUP message just arrived� The message

also completes the exchange of VC identi�ers for the forward direction �source to destination	�

Upon receiving an N SETUP ACK message� each CP along the reverse path updates the bandwidth

reserved for the connection �its original reservation was at least that value	� updates the label �elds and

records it in the switch and sends the message upstream� When the message arrives at the source CP�

the connection is now ready� However� because the destination may require some time before agreeing

to accept the connection �based on UNI speci�cations	� data cannot yet �ow through the connection� If

N SETUP ACK �or CONNECT	 are not received in the source after a speci�ed time�out� it will re�send

the N SETUP message again�

When the destination host responds with a UNI CONNECT to the destination CP� the CP sends

N CONNECT upstream using the forward VC traversal mode� When the N CONNECT reaches the

source CP it is converted back to a UNI CONNECT and delivered to the source host� The message

N CONNECT ACK is sent back to the destination host using the forward VC traversal mode for error

recovery purpose� Both N CONNECT and N CONNECT ACK are of the forward VC traversal type and

do not impose any additional processing at the intermediate nodes� When the N CONNECT ACK reaches

the destination CP it delivers a UNI CONNECT ACKNOWLEDGE message to the destination host� The

setup procedure is now complete�

In normal operation of the network� clearing �take down	 operations are needed to release reserved

bandwidth upon the users requests to terminate connections� In addition� clearing operations are needed

to release reserved resources when failures cause the disconnection of the source from its destinations� The

clearing protocol is responsible for returning the used VC labels as well as bandwidth to the unused pool�

Ours is a �one pass release protocol�� based on the assumption that errors occur very infrequently�

The clearing protocol is initiated by a CP �the �originating CP�	 based on a user�s request or some error

condition� The originating CP generates and forwards an N RELEASE message �de�ned by OPENET	

which is of the VC traversal type� Each CP that receives the message releases the corresponding bandwidth

at the appropriate switch� erases the corresponding entry from the VC table and forwards the message�

Only a single N RELEASE message will be transmitted from the originating CP to the other end of the

connection�

������ Unicast Connection Maintenance

OPENET supports changing the reserved bandwidth in a connection� The N CHANGE message is used to

change the reserved bandwidth along a path when so is desired by the source user� It is always possible to

lower a bandwidth requirement but the increase in bandwidth is on an availability basis� The N CHANGE

message �using VC traversal	 contains the MAX and MIN bandwidth desired for this connection and a

refresh period value� The N CHANGE message is acknowledged by the N CHANGE ACK message� which

contains the �nal negotiated value and is also of the forward VC traversal type� The N CHANGE message

can be used in combination with the N RELEASE message to provide highly reliable mechanism for the

��



return of critical resources used by large bandwidth connections�

Connection maintenance is also important as a �garbage collection� mechanism that prevents deadlock

of resources following undetected messages and memory errors� These events are expected to be rare� and

therefore the connection maintenance we use is based on the source CPs sending at a very low rate periodic

N CHANGE messages in each direction of every established connection with no change in the bandwidth

parameters ��refresh messages�	� These refresh messages allow the intermediate CPs along the connection

to slowly age the connection and eventually take it down if not refreshed within the connection refresh

period� The refresh period is not uniform� high bandwidth connections may use more frequent refresh

messages than light connections�

We expect that typical connections may have multiple N CHANGE exchanges between their setup

and termination� Therefore� in many cases this procedure will dominate the network control signaling�

Therefore� it is particularly important to design these messages using light weight protocol and a hardware

implementation hooks� The N CHANGE and N CHANGE ACK messages are simple and contained within

a single cell and can be easily mapped into hardware implementation�

������ Multicast Connection Setup

A multicast connection setup is initiated by a user when it needs to communicate with several other users

in the network� The host sends its CP a request that contains the destination addresses� rate and the QoS

it requires� As in the unicast case� the CP maps this to a network class of service along with a MIN�MAX

representation of tra�c intensity� The CP then computes low cost feasible routes for the corresponding

constraints� These routes form a tree rooted at the source host and each of its leaves is a destination hosts

�or destination switch port	�

OPENET supports two ways to set up a multicast VC� The �rst method� called complete setup� is based

on a single setup message that traverses the whole tree and creates a multicast tree using a single message�

The second� termed incremental setup� is based on several unicast like setup messages �that may partially

overlap	� The incremental method allows the root to add destinations to the multicast tree one at a time

as in UNI 
���

In the complete setup case� the source CP computes a traversal path of the tree� This path starts and

ends at the source CP� and traverses each link of the tree exactly twice� The setup process is achieved by

an N SETUP message of the source traversal route type which include the traversal list� the function to

be performed by every link� the label �eld and the MIN and MAX values� much like the unicast N SETUP

message� For a complete list of the possible functions in the multicast case see ����

A CP that receives the N SETUP message for the �rst time �no backward labels assigned yet	 checks

if the requested service can be supported� As in the unicast case� If the resources cannot be secured an

N RELEASE message is sent back towards the source CP� In other cases the MAX �eld of the setup is

updated� the bandwidth reserved� If the entry in the VC table does not exist yet the VC table is updated

accordingly and a backward label is chosen and forwarded �a CP is always visited for the �rst time in the

down�stream direction	� If this message also includes a forward label �in addition to a new backward one �

indicating �rst upstream arrival	 the CP creates a new pair of �associated	 entries in both directions that

corresponds to this VC� If this is a branching point the CP then allocates the backward label �eld before

forwarding the N SETUP message while associating it with the same VC� Any time a N SETUP message

��



carries a backward label that is already known at that CP it is interpreted as a retransmission� Note that

these label exchanges always properly de�ne the associations between the label entries and informs the CP

about whether the setup is new or a retransmission�

When the N SETUP message completes the traversal back at the source CP its MAX value is the �nal

acceptable value at all nodes in the multicast tree� The source CP issues an N CHANGE message to

notify all CPs of the �nal accepted bandwidth using the VC traversal mode� Each CP then adjusts the

reservation to the �nal accepted value� The N CHANGE message is acknowledged by all leaf CPs with

the N CHANGE ACK message� which con�rms and completes the multicast connection setup�

������ The Incremental Multicast Setup

Based on the routes it determined� the host CP computes a traversal of the tree by several �partially

overlapping	 linear paths� Each of these paths ends at one of the destination CPs� and traverses part

of the tree from the root down to a leaf� Current UNI signaling for multicast connection require the

addition of end�users one at a time using a separate ADD PARTY message for each one� Note that it

is possible to perform the incremental setup either synchronously or asynchronously� In the synchronous

approach� a setup message must be acknowledged by the destination before the next one is sent� In the

asynchronous approach� the setup messages can be transmitted in parallel without having to wait for the

acknowledgment of other setup messages� To result in a single multicast connection the setup messages

must be identi�ed with the set of entries in the VC table corresponding to the multicast connection� This

is done with the forward and backward label �elds in the N SETUP message similar to the complete

setup case� Generally� the setup operation is similar to the unicast setup where the overlapping parts are

considered as retransmissions and reservation is only conducted once� Details and an example are provided

in ����

������ Multicast Connection Clearing

Unlike unicast connection� a multicast connection may be partially taken down� for example� when one

end�user decides to remove itself from the multicast or when a failure caused the tree to be partitioned

such that a part of it remains operational� There are two basic clearing operations� A complete take down

of the entire connection is termed connection release� A partial take�down of a connection is referred to as

a user drop operation� which can be a root�originated or a leaf�originated request� It is required �at both

UNI and OPENET	 that the originating user stays connected at all time�

Releasing a multicast connection is initiated by the source using the N RELEASE message as in a

unicast connection� That is� the N RELEASE message traverses the multicast tree using the VC traversal

mode and releases the bandwidth and labels of the connection� Drop requests are handled in the opposite

direction� that is� bandwidth is release step by step from the leaf being dropped until the �rst junction

node� According to this process� the CP sends an N RELEASE message on the upstream direction of the

multicast tree using the VC traversal mode� This message will release the bandwidth and the labels up

to the corresponding �rst branching node� The branching node� upon receipt of this message will send an

N DROP REPORT message �of the VC traversal type	 to the source�

Another common operation is a source�triggered dropping of a party� Because it is more convenient to

conduct the dropping of a party from the dropped party backward� this operation is done in two steps� The

��



source node sends an N DROP REQUEST message which contains a list of end point IDs of the parties

to be dropped� This message is of the VC traversal type� and it traverses the multicast connection and

arrives at all destination CPs� All destination nodes whose end point reference is included in this message

will start a drop party process as described before� As a result� an N DROP REPORT message will be

delivered to the source for each dropped party� completing the drop operation�

�� Summary

The OPENET architecture o
ers a performance oriented and open infrastructure for building large and

e�cient ATM networks� It leverages the PNNI standard as much as possible without sacri�cing these

essentials�

The performance enhancements make use of several novel mechanisms which address the key perfor�

mance bottlenecks of network control� OPENET uses hardware base multi�point to multi�point unicast to

for a major facilitation in the dissemination of utilization update� It employs o
�line route computation

to reduce routing latency� It utilizes light�weight hardware compatible signaling with end�to�end error

recovery to both reduce signaling latency and to reduce overall signaling computation load�

OPENET o
ers standard APIs and access to its routing modes and information to future network

control applications making these applications switch independent�

References

��� R� Handle� M� Huber and S� Schroeder� �ATM Networks� Concepts� Protocols� Applications�� second
edition� Addison�Wesley� ���
�

��� I� Cidon� I� Gopal� M� Kaplan and S� Kutten� �A Distributed Control Architecture of High�Speed
Networks�� IEEE Trans� on Communications� Vol� 
�� No� �� pp� ���������� May �����

��� I� Cidon� T� Hsiao� P� Jujjavarapu� A� Khamisy� A� Parekh� R� Rom and M� Sidi� �The OPENET
Architecture�� SUN Microsystems Laboratories report� SMLI TR������� December �����

�
� PNNI SWG� �PNNI Draft Speci�cation� ATM Forum contribution �
��
��R��

��� ATM Forum� �ATM User�Network Interface Speci�cation�� version ���� Prentice Hall �����

��� I� Cidon� I� Gopal and R� Guerin� �Bandwidth Management and Congestion Control in plaNET��
IEEE Communication Magazine� Vol� ��� No� ��� pp� �
���� October �����

��� I� Cidon� I� Gopal� P� Gopal� R� Guerin� J� Janniello and M� Kaplan� �The plaNET�ORBIT High
Speed Network�� Journal of High Speed Networks� Vol� �� No� �� pp� �������� �����

��� A� Baratz� J� Gray� P� Green� J� Ja
e and D� Pozefsk� �SNA Networks of Small Systems�� IEEE
Journal on Selected Areas in Communications� Vol� SAC��� No� �� pp� 
���
��� May ����

��� R� Cohen� B� Patel� F� Scha
a and M� Wiilebeek�LeMair� �The Sink Tree Paradigm� Connectionless
Tra�c Support on ATM LANs�� Proceedings of IEEE INFOCOM��� � pp� �������� Toronto� Canada�
June ���
�

���� I� Cidon and I�S� Gopal� �PARIS� An Approach to Integrated High�Speed Private Networks�� Inter�
national Journal of Digital and Analog Cabled Systems� Vol� �� No� �� pp� ������ April�June �����

���� J� Moy� �OSPF Version ��� Network Working Group� Internet Draft� September ����

���� J� McQuillan� I� Richer and E� Rosen� �The New Routing Algorithm for the Arpanet�� IEEE Trans�
on Communications� Vol� ��� No� �� pp� �������� May �����

���� D� Bertsekas and R� Gallager� �Data Networks�� second edition� Prentice Hall� �����
��



��
� R� Bettati� D� Ferrari� A� Gupta� W� He
ner� W� Howe� M� Moran� Q� Nguyen and R� Yavatkar�
�Connection establishment for Multi�Party Real�Time Communication�� in Proceedings of Fifth In�
ternational Workshop on Network and Operating Systems Support for Distributed Audio and Video�
Durham� NH� April ���


���� B� Awerbuch� I� Cidon and S� Kutten� �Communication�Optimal Maintenance of Replicated Infor�
mation�� Proceedings of �	st Ann� Symposium on Foundation of Computer Science� �St� Louis� MO	�
October ����� pp� 
�������

���� A� Segall� �Distributed Network Protocols�� IEEE Trans� on Information Theory � Vol� IT���� No� ��
January �����

���� F� K� Hwang and D� S� Richards� �Steiner Tree Problems�� Networks� Vol� ��� pp� ������ �����

��


