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Efficient Support for Client/Server Applications
Over Heterogeneous ATM Networks

Ornan (Ori) Gerstel,Associate Member, IEEE, Israel Cidon,Senior Member, IEEE, and Shmuel Zaks

Abstract—We present a new network design problem that is
applicable for designing virtual paths (VP’s) in an asynchronous
transfer mode (ATM) network to efficiently support client/server
applications. We present several alternatives for the solution,
compare their properties, and focus on a novel “greedy” solution,
which we prove to optimize certain important criteria (namely,
the network overhead for a request/response and the utilization
of bandwidth and routing table resources). We also present simu-
lation results that demonstrate the performance and scalability of
our solution. In addition, we propose a new efficient bandwidth
allocation scheme which is tailored for client/server applications
over ATM networks.

Index Terms—ATM network, client/server paradigm, network
design, virtual path design, virtual path routing.

I. INTRODUCTION

A. Asynchronous Transfer Mode Networks

T HE asynchronous transfer mode(ATM) is the network
architecture standard proposed for broadband Integrated

Services Digital Networks (B-ISDN). This architecture is
accepted by a large array of vendors and standard organizations
(ITU and the ATM Forum), and is thoroughly described in the
literature (e.g., [8], [10], [16], and [20]).

ATM is based on small fixed-size packets termedcells.
Each cell is switched independently, based on two small
routing fields at the cell’s header, called thevirtual channel
identifier (VCI) and virtual path identifier(VPI). Since ATM
is connection-oriented, the cells are routed on predetermined
routes in the network that must be set up prior to their usage
for data transfer.

Routing in ATM is hierarchical in the sense that the VCI
of a cell is ignored by most of the network nodes in the path
traversed by the cell; these nodes route the cell based on its
VPI field alone. This scheme effectively creates two types
of predetermined simple routes in the network: those based
on VPI’s [virtual paths (VP’s)] and those based on VCI’s
[virtual channels (VC’s)]. VP’s may be viewed as virtual links,
connecting (possibly remote) switches as neighboring nodes in
a virtual network, while the route of VC’s may be viewed as
a concatenation of multiple VP’s. We refer to the number of
VP’s that are used by a VC along its route as theVP hopsof
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the VC. The reason for requiring a low number of VP hops
per VC are discussed later. In ATM, VC’s are typically used
for connecting network users, while VP’s are used for routing
VC’s and for simplifying network resource management.

Three types of ATM switching nodes have been considered
and implemented.

Nodes: nodes are switching nodes that cannot
switch the cell based on its VPI alone (since they either use
both VPI and VCI for their switching decision or use the VCI
alone, as is often the case in ATM local area network (LAN)
switches). Clearly, these nodes must be involved in the setup
of every VC that passes through them, and, thus, they are
termed “VC switches” ( ’s for short).

Nodes: nodes are nodes that use only the VPI
field for switching cells. Such nodes do not allow switching
of a VC from one VP to another (since they do not refer to
the VCI field at all), and switch VP’s exclusively; hence, they
are termed “VP switches” ( for short).

Nodes: nodes are nodes that route some cells
by using the VPI alone and others by using both the VPI
and VCI. An example of such a switch may be found in [7].
When a cell arrives at this switch, its VPI is first examined
and used as an index into a VP routing table (as in ’s).
The appropriate entry contains a new value for the cell’s VPI
and a port into which the cell is switched. If the entry contains
a special “null” value, the VCI is used (together/without the
VPI) as an index into a VC routing table in which a new VPI
and VCI for the cell are found, and in which a port to send the
cell to is specified (as in ’s). This mechanism enables some
VP’s to terminate at the node (by having “null” in the entry
pointed by their VPI value) and some VP’s to pass through
the node. We term these nodes “ ’s” since they switch
both VP’s and VC’s.

The VC and VP concepts received much attention in the
communication literature, yet the problem of how VP’s should
be laid out in a given network topology was addressed only in
a few works [1], [2], [6], [13], [14], [17]. These works assume
only one type of node (usually ), a fact which—besides
reducing the practical significance of the model—substantially
simplified it and the obtained results. In this work we assume
that the network is heterogeneous, i.e., that all three node types
coexist in it, as is expected to be the case in realistic large-scale
networks.

B. The Client/Server Paradigm

One of the major factors in the success of the penetration
of ATM into data communication markets is its ability to ade-
quately support existing network applications such as Internet
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protocol (IP) and Web services, mail applications, file transfer,
and distributed applications.

A very common paradigm for network applications is the
client/server paradigm. Implemented explicitly in many net-
work applications or implicitly—via remote procedure call
(RPC) mechanisms [3]—in distributed operating systems (e.g.,
[4]), this paradigm is based on a “smart” server application
that is accessed by many clients, whenever they need data
from the server. The clients issue short request messages
(typically less than 1 KB), that are handled by the server,
which consequently sends a typically much longer (several
megabytes) response [5]. The most prevalent example for this
usage is the World Wide Web. Other examples are distributed
file servers [e.g., network file server (NFS)], file repositories,
databases (in which a query is sent as a request and the relevant
data is sent as a response), and name/address servers (such as
distributed name server (DNS) or X.500).

Due to the central role that the client/server paradigm
plays in existing network applications, it is obvious that it
must be properly accommodated by both private and public
future ATM networks. There are two major alternatives for
the implementation of the paradigm using ATM networks.

1) Use a native connectionless service [19] or an over-
lay IP network to send both requests and responses
encapsulated in datagrams, without need for per-VC
setup. However, such a service may not necessarily be
available with every ATM network and incurs extra cost
and management overheads. More importantly, most
such services do not guarantee low data loss probability.

2) Use regular VC’s for transferring data from the client to
the server and vice versa. This method was implemented
in some of the new transport protocols (e.g., versatile
message transaction protocol (VMTP) [18]) and we
focus on it in the rest of the paper. While most of this
work applies for any quality of service (QoS) class,
we assume constant bit rate (CBR) and variable bit
rate (VBR) traffic for simplicity. Also, while available
bit rate (ABR) and unspecified bit rate (UBR) classes
may be more suitable for data applications, they do
not provide hard service guarantees and entail complex
buffer management.

C. Contribution of this Paper

In this paper we discuss methods for supporting client/server
applications over an ATM network by setting up semiperma-
nent VP’s in the network that enable clients to efficiently
set up short-lived VC’s each time they wish to submit a
request to the server. After the setup, these VC’s are used
by the client to send a request to the server and by the
server to return a response, and are then terminated until
the next request. We propose a method for designing the
routes of VP’s in a given network so as to support such
VC’s as quickly and as efficiently as possible. Our solution
is optimal, both in the setup/teardown overhead for a new
VC and its propagation and processing delay, while keeping
its resource utilization as low as possible. We also suggest a
novel bandwidth allocation scheme that further improves the
resource utilization of the solution.

Besides its use for client/server applications, our VP layout
design may be used as a building block for more complex
general-purpose VP layouts, as demonstrated in [13] for sim-
pler cases. Our greedy algorithm (see Section V-B) is based on
a framework suggested in [14]; however, while [14] applies to
networks which comprise of ’s exclusively and clients
are assumed to be connected to all network switches, the
present solution applies to more realistic (and complex) cases,
in which the network comprises all types of switches and
clients are connected to a subset of the switches. A preliminary
version of this paper appeared in [12].

Similar problems were considered in [1], [6], and [15].
While these formulations apply to a wider setting (not just
client/server applications), they are less appropriate for such
specific needs and have only heuristic solutions, whereas here
we present a proven optimal solution.

The paper is structured as follows. In Section II we present
the design problem which stems from supporting client/server
applications over ATM and in Section III we explore the
spectrum of possible solutions to the problem (including an
overview of our approach). In Section IV we compare the
possible solutions using numerical simulation results, while in
Section V we focus on the formulation of the main problem
solved in the paper (namely, the VP layout for client/server
applications) and present an optimal algorithm for it (the proof
of optimality may be found in the Appendix). We summarize
the results in Section VI.

II. THE DESIGN PROBLEM

The main focus of this paper is a design problem, in which
it is requested to determine a set of VP’s and a route for each
of them in a given ATM network, so that a given set of clients
will be able to set up VC connections to a given server, for
the purpose of sending request/response messages. These VP’s
will enable setting up the VC’s as quickly as possible, while
not requiring too many network resources.

The design problem for a given client/server application1

is the following.
Input Data:

1) The topology of the ATM network (i.e., the set of
switching nodes and the links connecting them) in the
form of an undirected simple graph ;

2) the type of each switching node (i.e., which node is a
, , or );

3) a subset of switches to which the clients of
are connected, and a node to which the server

is connected;
4) —the propagation delay of each physical link

, including the processing delay of an attached
node;

5) —the amount of available bandwidth on each
link that may be allocated for the purposes of;

6) —the maximum number of concurrent requests
from clients to the server that is supported by;

1Recall that many such applications coexist in the network; however, the
design problem focuses on each of them separately.
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7) —the required bandwidth for a single request
from a client to the server of ;

8) —the required bandwidth for a single response
from the server to a client of ;

9) —a maximum quota on the number of entries in
any VP routing table, that may be used for (termed
the load on the routing table). This is an important
requirement, as the resource of routing entries in each
table is limited to 2 (see [8]), and the resource is shared
by VP’s which support other client/server applications,
as well as many other services. In the sequel we show
that this resource is easily exhausted, if not carefully
allocated.

Feasible Solution:A set of VP’s, a route in the network
for each such VP and its bandwidth with the following
characteristics.

1) The total bandwidth of VP’s that share a linkdoes not
exceed the link’s bandwidth constraint .

2) The VP’s have enough bandwidth to support
simultaneous requests from client to server and a single
response from server to client (assuming the server
controls the bandwidth for responses on a link).

3) The VP’s obey the constraints imposed by the different
types of switching nodes (e.g., no VP terminates at a

node).
4) The number of VP’s that use any given physical link is

bounded by (see Observation 1).

Optimization Goal: Find a feasible solution which reduces
the overhead of the setup of VC’s from client to server, by
achieving the following two targets.

1) The maximum number of VP hops between any client
node to the server’s node is minimized. At the end of
this section we shall reason why this improves the setup
performance and bandwidth utilization in the network.

2) The physical route that each VC takes incurs minimal
delay—both propagation, fixed node processing and
queuing delays are taken into account. (Variable queuing
delays are outside the scope of the paper and should be
negligible for the QoS classes discussed herein.) Our
results can be easily adapted to any other route related
cost model—see discussion in Section III-B-2.

Observation 1: The number of used VP routing entries at
a given port processor2 is equal to the number of incoming
VP’s that use the attached link. This holds since the VPI of a
cell that belongs to such a VP is used by the port processor
as an index into its VP routing table.

It is more convenient to think of as the maximum
number of VP’s that share a link, rather than a limit on the
routing table load.

Observation 2: An important fault tolerance issue that
stems from Observation 1 is based on a VP rerouting protocol
suggested in [7] for recovering the network from link failures:
upon a link failure, the network reroutes VP’s that use the

2We assume here the widely accepted switch architecture of [7], in which
the switch includes port processors that connect to the switches’ ports. Each
port processor has a VP and/or VC routing table, by which it determines how
to handle incoming cells.

faulty link to other paths in the network, thereby achieving a
low overhead migration of all VC’s that use the faulty link
(and thus use the rerouted VP’s) to alternative routes. The
overhead of this recovery process is clearly proportional to
the number of VP’s that share the link and is thus bounded
by .

There are two reasons for keeping the VP hops per VC low.

1) As discussed below, a feasible solution for most net-
works relies on setting up VC’s on demand, for a
specific request/response interaction, after which they
are removed from the network until the next request
is submitted. As a result, the overhead of a lengthy
connection setup due to high VP hop count for such
“short-lived” VC’s may exceed the necessary time for
the data transfer itself.

The setup overhead of a VC is directly proportional
to the number of VP’s that are used by the VC along
its route (i.e., its VP hops). This stems from the fact
that only at the end of each VP, must the network layer
software be involved in setting up the VC routing tables
in support of the new VC.

2) If the QoS class is CBR or VBR, the fact that a VC
uses a VP reduces the available bandwidth on that VP.
Therefore, the amount of reserved bandwidth for a VC
is proportional to its VP hops.

A technique for reducing the effect of propagation delay
on the setup protocol has been suggested [18] in which the
setup protocol triggered by the client to set up a VC from
the client to the server will also create the VC in the opposite
direction (from the server to the client) to carry the response by
the server. This technique reduces the setup overhead of two
round-trip delays by half. This setup is termedimplicit setup
in [18] and requires that the routes taken by the VC from
client to server and vice versa will be along the same route in
opposite directions. Such pairs of VC’s are termedfull-duplex
VC’s; a full-duplex VP is similarly defined. The bandwidth of
a full-duplex VC/VP will be denoted by a pair where

is the bandwidth from the client to the server andis the
bandwidth in the opposite direction. Hereafter we discuss only
such VC’s/VP’s, so the term “full-duplex” is omitted.

III. SOLUTIONS

A. Simple Approaches

Three straightforward solutions to this problem suit specific
applications and small networks but do not scale well for other
cases (see Fig. 1 for a pictorial demonstration).

Simple-1: Create a permanent VC from each client to the
server (and vice versa)—whenever a client wishes to send a
request, it may do so with no setup overhead. The main draw-
back of this solution is that these VC’s must be maintained
(e.g., when a physical link fails), a network-management
overhead that is not justifiable if they are not frequently
utilized. Another major drawback in the case of CBR and
VBR traffic is its inefficient bandwidth allocation—each such
VC requires allocated bandwidth that cannot be reused by any
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(a) (b)

(c) (d)

Fig. 1. Solutions to the VP layout problem. (a) SIMPLE-1. (b) SIMPLE-2. (c) SIMPLE-3. (d) Our solution.

other client. This is especially problematic from the server to
the client, where the bandwidth requirement is significant.

Simple-2: Create a permanent VP from each client’s
switching node to the switching node connected to the server
(and vice versa)—this solution has the advantage over SIMPLE-
1 that the individual VC’s from the clients to the server are
only created upon request; hence, if many clients are connected
to the same switching node, they are supported by the same
VP. In this case a VC setup is necessary for every client’s
request, but this VC involves only a single VP,3 thus its
setup is very efficient. A main disadvantage of this solution
is that the allocated bandwidth to each such “direct” VP
may be reused only by clients that are connected to the same
switching node. Another disadvantage is that VP routing tables
at nodes that are close to the server tend to get overloaded; if
a client/server application is large (or the servers of numerous
such applications are in the same network vicinity), the VP
routing tables close to the server are easily filled up entirely
with entries of such VP’s. As discussed earlier, this also
reduces the efficiency of VP-based fault recovery.

Simple-3: Create only VP’s that span a single physical link.
This solution is optimal in its degree of reuse, since a VP may
be shared by all clients for which the chosen physical route

3Assuming there are noCX ’s en route from the client to the server—no
VP can pass through aCX node without terminating at it. Hence, the number
of VP hops of a given route is at least the number ofCX ’s included in it.

TABLE I
CHARACTERISTICS OF THEDIFFERENT LAYOUTS. “ENTRIES” REFERS TO

THE MAXIMUM NUMBER OF VP ENTRIES PERVP ROUTING TABLE,
“B ANDWIDTH” REFERS TOMAXIMUM BANDWIDTH PER LINK, AND

“H OPS” REFERS TO THEMAXIMUM NUMBER OF VP HOPS PERVC

includes the appropriate link. This solution results in very long
setup times and is thus impractical when the physical network
is sparse and VC’s traverse a large number of links. It is a
viable solution for dense networks.

Example 1: Consider Fig. 1(a)–(c), which demonstrates the
three above-mentioned solutions and one of the options en-
abled by our solution [Fig. 1(d)] on the same network. Table I
includes the resources utilization of these solutions. In the ta-
ble, bandwidth is measured in multiples of
(i.e., 6 stands for a bandwidth of ).
As shown in the next section, our solution may be tuned to
produce many different VP layouts, and the solution depicted
in the figure is only one option. In the figure we did not mark
the delay of the various links; however, we assumed all delays
to be equal, except for the delay on the link between the upper
left and the lower left switches, which is higher (and accounts
for the fact that none of the clients uses the upper left switch).
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B. Our Approach

The General Framework:To overcome the shortcomings
of the above SIMPLE-2 and SIMPLE-3 solutions, we have
devised the following algorithm, which is essentially an in-
termediate solution between these two extremes. The solution
can be tuned to become either of these solutions, but also any
intermediate alternative, thereby displaying a tradeoff between
the setup time and the amount of necessary resources at every
network element (i.e., link, switch). Our solution is based on
three main phases.

Phase 1: Given the topology of the network and the
amount of available bandwidth on each link , we
find a tree that spans all of the client’ switching nodes, the
server’s switching node, and all necessary intermediate nodes.
All of the routes of VC’s used for the given application will
be included in this tree; hence, it is termed theclient/server
base tree(CSBT for short). There are several different sets of
properties that may be desirable for a CSBT. Each such set
yields a different tree, and the possible options are discussed
below. Between these options we have chosen to focus on a
CSBT with the following properties.

• The route between any client to the server is as short as
possible in terms of its propagation and processing delay.

• The allotted bandwidth ( ) on each tree link
is large enough to accommodate the required bandwidth
for all VP’s that use . Since there are at most such
VP’s, the total required bandwidth has to multiplied by
a factor.

Phase 2: Given CSBT and the type of each node, we de-
termine a set of VP’s that enable connecting each client to the
server using the path in CSBT, so that no more than VP’s
share any tree link, and so that the number of VP hops between
any client to the server is minimal. This phase is the central fo-
cus of the paper. In Section V we formally define the problem
in this phase and present an optimal greedy algorithm for it.

Phase 3: While the above two phases are performed
during a design phase, this phase pertains to the run-time
aspects of the service. These aspects include variations
in the protocols for setting up (and taking down) VC’s
[18] and protocols for dynamically changing the design
of PHASE 1 and PHASE 2, upon a request of a client to
subscribe/unsubscribe from the service.

An overview of the three stages is given below. For sake
of brevity, we do not extend the description of PHASE 1 and
PHASE 3 beyond this overview (with the exception of the NP-
completeness proofs in the Appendix), and focus in the rest
of the paper on PHASE 2.

Overview of Phase 1:In this paper we assume that the
base subgraph that spans the server and the clients is a tree.
We do so for the following reasons.

1) Trees are easy to understand and manage, and are
very suitable for such applications. This makes them a
plausible choice for service providers. Current telecom
access networks are predominantly trees for similar
reasons.

2) It was proven in [14] that if the base is of general
topology, then the problem of PHASE 2 is NP-complete.

It is, therefore, challenging to find efficient solutions for
it. No good approximation algorithms are known to this
problem.

3) In Section III-C we present a novel efficient bandwidth
allocation scheme tailored for client/server applications,
for which the optimal spanning subgraph is clearly a
tree.

There are a few different options for a CSBT, depending on
the resource constraints and cost model.

CSBT-1—Minimize Delay and Cost , Where
: This is the CSBT

mentioned earlier that is assumed in the rest of the paper
due to its good characteristics, reasonable cost model, and
algorithmic feasibility. To find such a tree, take the given
graph and remove from it links that do not have enough
bandwidth to support VP’s with
bandwidth each. In the remaining graph find paths with
shortest delay from the server to all of the clients (e.g.,
using the Bellman–Ford algorithm).

This algorithm clearly finds shortest delay paths (among the
feasible ones). Also, since the bandwidth from the client nodes
to the server does not depend on the tree, the cost is reduced if
the sum of distances is minimized, and, hence, if each distance
from a client node to the server is separately minimized.

CSBT-2—Minimize Delay and Cost , Where
: This tree is hard to find algorithmically.

Its NP-hardness is proven in the Appendix subsection
A. In addition, its cost model which ignored bandwidth
considerations seems less reasonable.

CSBT-3—Minimize Cost Only, Where
: If the previous tree characterization

is simplified by removing delay considerations, then the
problem is identical to the Steiner tree problem, which is
NP-hard, but many heuristics are known to solve it with an
approximation factor of two [21].

CSBT-4—Any Tree for Which the Bandwidth Used Per Link
Does Not Exceed the Available Bandwidth : While
CSBT-1 only considers links that can support VP’s, it
may be useful to also consider links with less free bandwidth
( ). Such an ap-
proach may yield a feasible solution in places where CSBT-1
cannot find one. The main drawbacks of this approach are: 1) it
yields solutions that tightly fit into the available bandwidth and
may leave no room for expanding the CSBT to support more
clients and 2) it is algorithmically hard to find; the NP-hardness
of the algorithm is proven in subsection A of the Appendix.

Overview of Phase 2:This phase is based on a greedy
procedure calledfind layout , which is described in detail
in Section V-B. find layout takes as an input the tree
CSBT, an upper bound on the number of allowable VP hops
( ) for a client to the server, and an upper bound on the
allowed load at any tree link ( ); it returns as an output the
layout of VP’s, or announces that it cannot find a layout that
meets the above bounds. In Section V-C it is proven that if
there exists a layout that meets these bounds,find layout
will find it.

The procedure views CSBT as rooted at the server’s node,
and gradually extends VP’s from the leaves toward the root. At
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every node that find layout handles, if there are clients
attached to , find layout creates a new VP from it (that
includes at this point only the link from to its parent) and
strives to extend all of the VP’s from’s subtree (including
the new VP) toward the root. However, in most cases the VP’s
do not reach the root for several reasons.

• Wheneverfind layout encounters a VC switch (i.e.,
is a node), all of the VP’s in its subtree must be

stopped at (by definition of a ).
• If the load on the link from the current nodeto its parent

(i.e., toward the root) exceeds , find layout
reduces the number of VP’s that share this link by
stopping some of them at(if is a ) or by stopping
some of them at the closest descendants ofthat are

’s (if is a ).

Whatever the reason, if a VP is stopped before reaching the
root, then the VP hops from clients that use the VP to access
the server is increased. The crux of this algorithm is in the
choice of VP’s to be stopped, so that the maximum VP hops
from client to server is minimally increased.

Overview of Phase 3:The run-time protocols for client/
server connections over ATM can be divided into two cate-
gories: protocols that use the VP layout for request/response
messages and protocols that change the layout.

The first category includes the VC implicit setup/teardown
protocols. These protocols are essentially identical to regular
VC setup/teardown protocols, with the exception that implicit
setup must allocate entries in VC routing tables in both
directions (i.e., from client to server and vice versa)—along the
lines of [18]. In addition, bandwidth for a request and response

is allocated in the appropriate directions.
Teardown may be performed either explicitly or implicitly
(see [18] for details).

The second category includes changes in the VP layout,
caused by changes in the set of clients that may potentially
access the server. A new signaling mechanism is necessary
for informing the network that a client wishes to subscribe
to (or unsubscribe from) the service provided by the server.
If there are no subscribed clients previously connected to the
client’s switching node, then a new VP must be added (or
an old VP must be removed) from the network, an operation
that involves updating CSBT and changing the VP layout
(of PHASE 2). As far as CSBT is concerned, it is easy to
obtain a new optimal CSBT with only local changes in the
network; as far as the VP layout is concerned, however, due
to the properties offind layout , there is no simple way
to obtain a new optimal layout without global changes, which
are impractical during the ongoing operation of the network.
Therefore, a practical compromise would be to update the
layout locally on every such event, reducing its optimality,
and to occasionally reconstruct the whole layout in an optimal
manner using PHASE 2 (whenever resource utilization of the
current layout deteriorates severely).

C. Bandwidth Allocation Schemes

In the above discussion we did not take into account
the effect of specific client/server properties on the scheme

of bandwidth allocation. In this section we present a novel
bandwidth allocation scheme that suits client/server applica-
tions based on CBR and VBR QoS classes. The scheme is
considerably more efficient than the traditional scheme. The
solution in this paper may be used in conjunction with both
traditional and new schemes, as well as with ABR and UBR
classes.

In what follows we assume that the server is capable of
handling a single request at a time (since this is the common
case). The results may be extended to the case wheresuch
requests are handled in parallel, in a straightforward manner.
In this context there are two possible schemes.

The Conservative Scheme:Use a traditional bandwidth al-
location scheme for client/server applications—allocate the
necessary bandwidth to accommodate up to simultaneous
bandwidth reservations4 . Each
implicit VC setup procedure will allocate
bandwidth for both of its directions. This scheme was assumed
in the above discussion.

The Efficient Scheme:Rely on the server for policing the
utilized bandwidth—allocate band-
width on every link that is part of CSBT; donot allocate
bandwidth to each VP separately. During VC setup, do not
allocate bandwidth to the VC. Since the server handles each
request sequentially, it never transmits more than
bandwidth in the direction of all the clients together, hence
keeping the utilized bandwidth on any link under the allocated

.
The two schemes suit different cases. If the client/server

application is supported by a general-purpose public network
provider, it is more reasonable to use the conservative scheme
since it does not require a specialized signaling mechanism
and switch functions for such applications. On the other
hand, if the application is supported by a more specialized
network (e.g., a Web network), in which most of the con-
nections are for client/server applications, an efficient scheme
will significantly improve the utilization of the bandwidth
resource.

Our solution can be adjusted to both schemes, the only
difference being in the allocation of bandwidth for the CSBT
(at PHASE 1), which is done along the lines of the appropriate
scheme. In the conservative scheme each VP is allocated

bandwidth, resulting in a
maximum of
bandwidth per link; in the efficient scheme each physical link
in CSBT is allocated only bandwidth,
a decrease of a factor of nearly .

Observation 3: If the efficient scheme is used, it is obvious
that the base subgraph for PHASE 2 should indeed be a tree,
since the total bandwidth required by the whole client/server
application is provably minimal.

4Note that in order to supportNreq concurrent requests, it does not suffice
to allocatehNreq �BWreq ; BWrespi bandwidth for every VP, since if several
clients that use the VP attempt to concurrently set up VC’s, all attempts but
one will be rejected by the network, since all of theBWresp bandwidth in the
direction of the clients will be allocated to a single client.Nreq was assumed
to be one hitherto.



438 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

Fig. 2. The tradeoff between load and VP hops.

IV. SIMULATION RESULTS

We have tested our solution on randomly chosen CSBT’s.
Our results are depicted in Figs. 2 and 3. The simulations were
conducted on random CSBT’s, since the CSBT is determined
by both the topology of the network (which cannot be de-
termined at this stage for large scale networks) and by the
available bandwidth, which depends on the utilization pattern
in the network. For the sake of simplicity, we have assumed
that all switches are ’s.

Fig. 2 shows an interesting tradeoff between the number of
VP’s that share a link (Max load), and the maximum number
of VP hops. The graphs were obtained for 15 random CSBT’s
with 10 000 switches each (drawn in full lines), and a chain
tree, with the server at one end. The latter represents a worst-
case tree (drawn in a dotted line). It is interesting to note that
while the solution of a single VP hop (i.e., SIMPLE-2) requires
an average load of above 5000,5 it suffices to allow two VP
hops to reduce the average load to below 60 (and below 14
if three VP hops are allowed).

Fig. 3 shows the scalability of the solutions in terms of
the average required multiple of bandwidth units (where

is considered a single unit) in the conserva-
tive scheme and assuming . The results are based on
an average of the maximum required bandwidth units in each
CSBT, taken over ten CSBT’s per each network size. The
dotted line labeledcpn=4 shows the behavior of SIMPLE-1,
assuming there are four clients per node (hence “cpn”). The
line labeled byh=i shows the bandwidth requirement when
the number of VP hops is not larger thani (note thath=1

5Note that this load is unacceptable even if all of the routing resources of
the switch were dedicated to the client/server application in question, since
the maximum size of each such routing table is only 4096, since the VPI field
is limited to 12 bits inside the network.

represents the SIMPLE-2 solution andh=9 approximates the
SIMPLE-3 solution). From the figure, it is evident that three
VP hops are sufficient to support a reasonable number of
client/server applications on a large-size ATM network.

V. OPTIMAL SOLUTION FOR PHASE 2

A. The Formal Model

We shall need the following definitions to allow a formal
treatment of the problem (for basic terms and definitions, see
[9]).

Definition 1: A heterogeneous network is a tuple
, where:

physical tree CSBT produced by
PHASE 1;
set of nodes in (in which VP’s
always terminate);
set of nodes in (in which VP’s
never terminate);
set of nodes in CSBT (in
which VP’s may either terminate
or not);
mutually disjoint sets, the union of
which is equal to ;
server nodeof the current applica-
tion;
set of client nodes.

We shall denote these entities by , , ,
, , and , respectively. We also ab-

breviate to and to .
Definition 2 (CSVPL):Let be a network with tree topol-

ogy and let be the set of all simple paths in
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Fig. 3. Scalability of our solution.

. A client/server virtual path layout (CSVPL for short)
is represented by a graph

rooted at and a function : , where an
edge corresponds to a VP betweenand .
The function maps each VP to its path in

, so that and are the endpoints of as well. We
term this path theinduced pathof the VP.

We extend the definition of to simple paths in as
follows.

Definition 3 (Induced Path):The induced path for a
path , where and
for every , is the path obtained by concatenating the induced
paths of all ’s.

Definition 4 (VP Routing Table Load):The load on a
link is the number of VP’s that include
in their induced paths, namely, .
The load definition is extended to a CSVPL by

.
The next definition limits the discussion to layouts that

satisfy the routing constraints of the various node types, and
VP hops constraints.

Definition 5 (Feasibility): For a network and , a
CSVPL is -feasibleif the following conditions hold:

1) for every , there is no VP ;
2) for every , there is no VP ,

such that and ;
3) .

Thus, in a feasible CSVPL, all of the VP’s that include a
node terminate at that node, and all VP’s that include

a node cannot terminate at it and are switched to an
adjacent node.

We now define an optimal solution as a feasible solution
which minimizes the VP hops between any client to the server.
To this end we first define the VP hops to be the

minimum number of VP’s that may be used to form a VC
between a client node and the server , such that the VC
uses the simple path in CSBT. Note that the path has to be
shortest possible in both the physical tree (CSBT) and the VP
layout (CSVPL). A formal definition is given as follows.

Definition 6 (VP Hops):The VP hops for a pair
of nodes is the minimum such that:

1) , for all );
2) , , ;
3) the induced path is a simple path between and

in .

If no such exists, define ; also define
.

Definition 7 (Rank): Let and let be closer
to the server in the CSBT. Therank of is the maximum
VP hops from any client node which uses in
its shortest VP route to the server (again, shortest in both
respects).

Definition 8: Given , a CSVPL is -optimal if it is
-feasible and its worst-case VP hop count is minimal

amongst all other -feasible VP layouts.
Example 2: Consider the CSBT in Fig. 4 (depicted in bold

lines) and the CSVPL (depicted in thin lines). It is easy to
verify that the CSVPL obeys the routing rules of the various
nodes, e.g., at node, some VP’s go through the node while
others terminate, at nodeno VP terminates, and at nodeall
VP’s terminate. The VP hops of the CSVPL since
for node , . The shortest route from to , which
is also simple in CSBT, is .
Note that if the physical tree is ignored and routes need only
be shortest in CSVPL, then the VP hop count fromto is
three— . The rank of VP is 4 since
it is the fourth hop toward the server for node. The load on
link satisfies and this is also .
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Fig. 4. A CSVPL on a CSBT.

B. The VP Design Algorithm

We now present a polynomial time greedy algorithm
find layout that produces an optimal CSVPL for any
given load. The algorithm framework is based on the one
presented at [14]; however, the present case is much more
complex due to the various types of switches (in [14]
all switches were assumed to be ’s, a fact which
substantially simplified the algorithm and its analysis). We
first describe the algorithm informally, then present a more
formal pseudocode, and finally show an example of how the
CSVPL evolves during an execution of the algorithm.

Fix some constant integersuch that (the depth
of CSBT will do). The find layout algorithm represents
the VP’s using vectors with elements (i.e., vectors over )
and, therefore, we shall need the following vector notations.

Notation: Let , , . We
use the following notations:

th element in the vector ;
sum of all the elements ;
part of the vector from theth to the th position;
vector of elements that are equal to;
concatenation of the vectors and ;
vector sum of the vectors and .

find layout starts from the leaves of the tree and
advances toward the root . For each node, it maintains
the number of VP’s, say , that contribute to the load on
the link from to its parent in the tree. This number is split
into components represented in a vector such
that , where represents the number of VP’s
with rank . For example, in Fig. 4 ,
since three out of the four VP’s traversing link have
a rank of 1 and the fourth VP has a rank of 5. Specifically,
find layout creates a VP with rank 1 for each leaf in

(at line 4) and no VP for leaves that are not clients’
nodes (at the same line). At an internal node, the vector

is equal to the vector sum of all of the vectors from
its sons—reflecting an attempt to extend all VP’s through.
An additional VP with rank 1 is added to this sum from
toward the server if is a client node (at line9). This VP
will be used to carry VC’s from the clients connected directly
to . If is a node, then all VP’s from the descendants
are stopped at (by definition of a node) and a single
VP starts from toward the server. The rank of this VP is,

Fig. 5. Transformation of a nodev 2 PCX(N )—Transform(Lv ; i).

Fig. 6. Transformation of aPCX node due to an overloaded vectorLv of
a PX node v.

assuming that the maximum rank of VP’s that stopped atis
. Consequently, .

At this stage, if the load on the link fromto its parent is not
too high (i.e., does not exceed ), find layout
proceeds to another node. However, if the load is too high, it
is reduced by transforming VP’s at some chosen node(using
the procedure defined below). The transformation
involves stopping some VP’s at, thereby changing the load
vector .

The node that is transformed depends on the type of node
—if is a node, then it is transformed ( ) so as

to not increase the VP hops significantly (at lines13–15 , see
Fig. 5). If is a node, it cannot be transformed (since
VP’s are not allowed to stop at) and is chosen to be a
descendent of , which is a node and which has the
largest number of VP’s that can be stopped without increasing
the VP hops significantly (at lines18–21 , see Fig. 6 ). In
this case, the algorithm may iterate on the descendants of
and repeatedly transform them until the load atis decreased
below the required level or until it determines that there is no
way to decrease the load as required.

The idea behind the transformation in Fig. 5 is that it is
better to stop VP’s with as low of a rank as possible (i.e.,
VP’s with rank , which is lower than some value in the
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Fig. 7. The find layout algorithm.

figure). This causes the rank of the VP that starts atto be
. All of the other VP’s that go through, continue toward

the parent of .
Definition 9: Define the following:

• a transformation on a vector at location is (see Fig. 5
for a visual demonstration)

• for a node , define the addition in that is needed if
is a client node by

if
otherwise

• for a vector , define
;

• for a node ; define to be the set of
descendants of which are nodes, and for which
the root to consists of nodes only (see Fig. 6).

A formal description of the algorithm follows in Fig. 7.
Example 3: An example of the execution of the algo-

rithm appears in Fig. 8. Links in which the load exceeds
are pointed to by arrows. Circled in grey are the

nodes thatfind layout chooses to transform. For sake of
brevity, the steps in the figure correspond to multiple steps of
find layout as long as these steps are independent of each
other. We shall refer to the subtrees of this CSBT as the left,
middle, and right subtrees. Note the following:

• The first transformation takes place in the left subtree.
Before it, the ranks of VP’s from the children of the PCX
node had ranks 1, 2, and 3.find layout only stops
the VP with rank 1. Thus, the node’s load vector changes
from (2, 1, 1, 0) to (0, 2, 1, 0).

• The second transformation involves the left and middle
subtrees. Thus, includes both PCX nodes from
these subtrees. The PCX node of the middle subtree is
chosen since it has VP’s with rank 1 while the PCX of
the left subtree has only ranks 2 and 3.

• Since the second transformation does not reduce the load
enough, a third transformation takes place for the same
subtree, this time involving the of the left subtree
again and stopping its VP with rank 2. Its load vector
thus changes from (0, 2, 1, 0) to (0, 0, 2, 0).

• The next transformation involves the entire tree, and
for the root contains three PCX nodes, one
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(a)

(b)

(c)

(d)

Fig. 8. Execution offind layout for Lmax = 3.

per subtree. The chosen PCX is of the rightmost subtree
as it has VP’s with rank 1.

• Finally, the last transformation involves the VPX of the
left subtree again, now stopping the rank 3 VP at it. As
a result, its load vector changes from (0, 0, 2, 0) to (0,
0, 0, 1).

C. Analysis

The proof of correctness of the above algorithm (i.e., proof
that the resulting CSVPL is -feasible with respect to )
is straightforward and is omitted for the sake of brevity. We
prove the solution thatfind layout produces is optimal, for

every given network and , by the following theorem
(for a detailed proof, see subsection B in the Appendix).

Theorem 1: The find layout procedure finds an -
optimal CSVPL for any given tree network .

Sketch of Proof:The proof is based on the claim that if
there exists a solution for a given and a maximum load
constraint , the find layout will find such a solution.
This is done by inductively comparing the given “optimal”
CSVPL to the CSVPL produced byfind layout , starting
at the leaves of the tree.

We first show how every CSVPL may be expressed by load
vectors (termed thevector representationof the
CSVPL). Next, we prove that if is the vector
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representation of the CSVPL found byfind layout , then at
every node , . This proves that the solution of
find layout is optimal since its load on each link does not
exceed that of any other solution. To this end, we strengthen
the claim that we wish to prove and we add the condition
that in a lexicographic order [in what follows, all
comparisons between vectors in are lexicographic, using
an order in which is the least significant component, e.g.,
(9, 11, 1) (2, 12, 1) (0, 0, 2)]. In fact, the transformations
in find layout were chosen so as to support this additional
condition and aid the analysis.

It is important to note that these two conditions (namely,
and ) do not hold for the final

set of vectors that find layout produces; they do hold,
however, for each nodeimmediately after has been treated
by the algorithm and before it is revisited for subsequent
transformations (i.e., before a new node is chosen at line6).
Hence, the condition holds for the children of a nodewhen

is first chosen at this line.
The time complexity of the above algorithm is bounded

by the following lemma. This bound is quite loose, but still
exhibits a relatively low complexity.

Lemma 1: The time complexity offind layout on a
network with nodes is .

Proof: In find layout each node may be considered
for transformation times (in a straightforward imple-
mentation of the procedure) if it belongs to for

nodes in the network. At each such event, time is
needed to determine if it is indeed chosen for transformation.

VI. SUMMARY

In this paper we studied the problem of supporting a
client/server application in an ATM network. We first listed the
parameters that seem important for such applications on one
hand and for ATM networks on the other hand. We presented
simple solutions to the problem and explained why they do not
scale well to large networks that are likely to be constructed in
the future. We then presented our solution, which can be tuned
to adjust various requirements, expressing a tradeoff between
the setup time of a VP layout to its resource utilization, and
demonstrated numerically its characteristics. We also presented
a new bandwidth allocation scheme that is optimal for such
applications.

Our solution is based on three main phases, amongst which
the second phase (that deals with laying out the VP’s from the
clients to the server) is the most complex, and in the second
half of the paper we focused on it. We devised a formalism for
the problem and presented a fairly fast algorithm for solving
it. Finally, we have proven that our algorithm indeed finds an
optimal solution for any given set of parameters.

The main conclusion from this work is the role of nodes that
switch both VP’s and VC’s ( ’s) in the VP design—these
nodes enable the flexibility of choosing VP’s to tune the design
according to the required balance between the utilization of
various resources in the network. Without such nodes, once
the CSBT is chosen, the VP routes are fixed.

APPENDIX

A. NP-Hardness of Finding the CSBT

In this appendix we prove that two of the options for a
CSBT, spelled out in Section III-B-2, are NP-complete.

A simplified version of the CSBT-2 option is the following
one, for the case when all links have unit delays.

Problem: Shortest distance Steiner tree (SDST).
Instance: An undirected graph , a subset of

nodes , a node , and an integer .
Question: Does there exist a tree in that spans all of the

nodes in such that the shortest distance between
each node in and is the same in and in ,
and such that the number of edges indoes not
exceed ?

Lemma 2: SDST is NP-complete.
Proof: By reduction to the set cover problem ([11, Prob-

lem SP4])—given a set , a set of subsets
, and an integer , does there exist a subset of

, , and that covers all of the elements in
( ).
Build a three-layer graph with a node in the first layer,

connected to nodes , representing the nodes
in in the second layer. The third layer contains nodes

, representing the nodes in, where each node
is connected to nodes in , which represent the elements

that the set contains.
Now, let the set of SDST contain the nodes in and
, let of SDST be , and let of SDST be . It is

easy to see that all shortest path trees rooted atthat span
the nodes in include a single edge connected to eachand
some of the edges connected to nodes in. A minimal tree
contains a minimum number of the latter edges. Therefore, if
SDST can be solved with edges, then the set can be
covered by sets out of —the sets represented by nodes in

connected by a tree edge to. On the other hand, if can
be covered by up to sets, then the solution implies a SDST
with up to edges.

A simplified version of the CSBT-4 option is the following
one, for the case when the available bandwidth for each link
is .

Problem: Bounded bandwidth spanning tree (BBWSP).
Instance: An undirected graph , a subset of

nodes , a node , and an integer .
Question: Does there exist a tree in that spans all the

nodes in such that if and its adjacent edges are
removed from , each remaining subtree contains
no more than nodes from ?

More explanation is needed here as to why the problem
represents CSBT-4 at all. Since the bandwidth required on a
CSBT link from a subtree toward the server is proportional to
the number of client nodes in the subtree, it grows on links
that are closer to the root. If the available bandwidth for each
link is , then there exists such a CSBT
iff the number of client nodes (i.e., nodes in) in each of the
largest possible subtrees is less than.
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Lemma 3: BBWSP is NP-complete.
Proof: By reduction to the node disjoint path problem

([11, Problem ND40])—given a graph and a set of node
disjoint pairs , are there node disjoint paths from
each to ?

Add a new node to the graph and connect it to each.
For each , add nodes and connect them to

. Also add nodes and connect them to .
Define and let .

First, note that all the edges betweenand must be part
of the tree, or else the removal offrom the tree will split it
into less than subtrees and, by the pigeon-hole principle, one
part will contain more than nodes from .
Next, it is easy to see that the only way for thenodes to be
connected to via a tree is to connect eachto some using
node disjoint paths (if the paths share a node in addition to,
a cycle is formed). The value of and the different number
of and nodes for each ensure that the paths in the tree
are from to (and not some other ), since only this way
can each subtree contain no more thannodes from . Thus,
if disjoint paths exist, then there is a solution to BBWSP and
if they do not exist, no solution to BBWSP can be found.

B. The Optimality Proof

In this appendix we present a detailed optimality proof of
Theorem 1. For this purpose, we need the following definitions
and lemmas.

Definition 10: A CSVPL is -minimal if it is -
feasible, , and the deletion of a VP yields
a CSVPL with .

Lemma 4: Let be a CSBT tree. Every -minimal
CSVPL can be represented by a set of vectors

, , such that for every node and
, the following conditions

hold:

1) ;
2) if is a leaf, then ;
3) if , then

;
4) if , then ;
5) if , then .

Before proving the main lemma in the optimality proof
(Lemma 5), we cite several properties of the above vector
representation.

Definition 11 ([14]): A vector is called -nontrivial iff
and ; in particular, if

it is 1-nontrivial, and if , then is
-nontrivial.
The following lemma is an extension of the one proposed

in [14]. Despite the usage of a similar technique, this lemma
is substantially harder to prove, the difficult case being the
transformation of a . For this case, assume that the current
node is a and that its load vector exceeds the
maximum bound. Consider the list of load vectors for all nodes
in in the optimal solution and in the solution
of find layout (assume they are numbered ).
Before transforming a node in , the inequalities of

(a) (b) (c)

Fig. 9. Load vectors ofDPCX(v).

Fig. 9(a) hold by the induction hypothesis. After transforming
some node at line 20 , the inequality for may be violated
[as in Fig. 9(b)], in which case we show there exists some node

for which the inequality is strict. Using this, we “borrow”
some of the load of to fix the inequality for node [see
Fig. 9(c)]. A more formal proof follows.

Lemma 5: Let . If there exists an -minimal
CSVPL with vector representation , then
for every node , the following holds:

1) if find layout is called with , then it does
not returnFAILURE while handling ;6

2) the vector produced by find layout satisfies
when find layout finishes handling

(before starting to handle a new node at line6).

Proof: By induction on the structure of the tree .
At leaf nodesfind layout cannot fail (and condition 1
holds), and by the algorithm and

by Lemma 4, thus condition 2 holds as well. At
an internal node , by induction for every son
of . Let , and let

. Clearly .
The proof continues according to the three node types.
Case 1— : . It is clear that find layout

cannot fail while handling such a node. Also it is clear that
. It follows from line 10 that

. It follows from Lemma 4
that and, thus,

.
Case 2— : If , then find layout

does not fail and it is clear that .
If , then find layout repeatedly transforms

nodes in . After a transformation of node , we
shall show that the transformed still obeys or
change the vector to and the vector to for
some other , so that .
The transformation will also obey the condition

. By this we achieve the following:

6Note that this is a weaker condition than the one specified above (i.e.,
kLvk � kMvk); however, the stronger condition was presented for sake of
clarity, while the precise condition is the weaker one.
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Formally, let be the descendent chosen at line18 during
some attempt to reduce the value of ; let be the index
chosen at the same line. By definition, is -nontrivial. Split

into the following two subsets:

and is -nontrivial for

is -nontrivial for

Let be the value of after applying .
Clearly . If , then

and all nodes obey ; if
, then two cases are possible.

1) For every , ;
then since is -nontrivial, it can be shown that

. However, since for every
, we have

and condition 2 is
satisfied as well.

2) On the other hand, if there exists such that
, we transform the vectors

as follows:

Clearly and . Also, the
inequality for node still holds (i.e., ) because

and
.

Case 3— : Assuming , then
find layout finishes handling at line without failing
and

The left inequality is due to the induction hypothesis, and the
right one is due to Lemma 4.

Assuming , then if there exists no that satisfies
the condition at line13 , then

The first inequality stems from the unsatisfied condition,
while the second inequality stems from the induction hy-
pothesis, and the third one from Lemma 4 (it is strict since

). This inequality contradicts
the assumption that is a feasible solution.

If, on the other hand, such anexists, it is easy to see
that find layout does not returnFAILURE and it remains
to show that . Clearly (since

); it is also clear that (otherwise
).

Now, if , then
, and since

, we get .
On the other hand, if ,

then there exists such that (and
) and

—a
contradiction.

The above lemma concludes the proof of Theorem 1, since
if we take an optimal CSVPL as (in the lemma), then
find layout is guaranteed to find a layout that obeys
the load constraint, with vectors that do not exceed
lexicographically those of . In particular, the VP hops
implied by do not exceed those of the optimal solution.
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