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Abstruct- A control  architecture  for  a high-speed packet- 
switched  network is described.  The  architecture  was  designed 
and  implemented as part  of  the PARIS (subsequently  plaNET  and 
BBNS)  networking  project at IBM.  This  high  bandwidth  network 
for  integrated  communication  (data,  voice,  video) is currently 
operational as a  laboratory  prototype.  It  will also be  deployed 
within  the AURORA Testbed  that is part  of the NSFlDARF'A 
gigabit  networking  program. 

The  high  bandwidth  dictates the need for specialized  hardware 
to support  faster  packet  handling for both point-to-point and 
multicast  connections. A faster and  more  efficient  network  control 
is also required  in order to support the increased  number  of 
connections  and  their  changing  requirements  with  time.  The 
new  network  control  architecture  presented  exploits  specialized 
hardware,  thereby  enabling tasks to be  performed  faster  and 
with less computation  overhead. In particular,  since  control 
information  can  be  distributed  quickly  using  hardware  packet 
handling  mechanisms, decisions can  be  made  based  upon  more 
complete and accurate  information. In  some respects, this has 
the effect of  having  the  benefits  of  centralized  control  (e.g.,  easier 
bandwidth  resource  allocation  to  connections),  while  retaining  the 
fault  tolerance  and  scalability  of  a  distributed  architecture. 

P 
I. INTRODUCTION 

ACKET SWITCHING networks have changed consider- 
ably in recent years. One factor has been the dramatic 

increase in the capacity of the communication links. The 
advent of fiber optic media has pushed the transmission speed 
of communication links to more than a gigabit per second, 
representing an increase of several orders of magnitude over 
typical links in most packet switching networks [19] that 
are still in use today. Increases in link speeds have not 
been matched by proportionate increases in the processing 
speeds of communication nodes. This implies that switching 
of information cannot be performed using traditional software 
store-and-forward functions. 

Another factor is the changed nature of  traffic carried 
by these networks. As opposed to pure data networks, or 
pure voice networks, it is now accepted that packet-switching 
networks (or variants of packet switching networks like ATM 
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[6]) will form the basis for multimedia high-speed networks 
that will carry voice, data, and video through a common 
set of nodes and links. Real time traffic  (e.g., voice and 
video) requires that the route selection function be capable 
of guaranteeing for a long period the availability of adequate 
network resources along the chosen path for a particular traffic 
stream. These streams typically require that a minimal amount 
of bandwidth be available to them as long as the stream 
is active. On  the other hand, nonreal-time services (such as 
traditional data services) are much less predictable and must 
be supported on a demand basis. Such nonreal-time services 
can be slowed down or be postponed for a later time when 
the network is heavily loaded but require quick and prompt 
setup if resources are available. The increased number and 
the heterogeneous characteristics of users (or calls) makes 
traditional network control schemes functionally inadequate 
and inefficient. 

Both of the preceding factors have a significant impact on 
the design of the protocols and control procedures for the 
network. The disparity between communication and processing 
speeds suggests that processing may become the  main bottle- 
neck  in future networks. A common partial solution to this 
problem is to introduce high-speed switching hardware which 
off-loads the routine packet handling and routing functions 
from the processing elements 1121. This issue has been heavily 
investigated in  the literature and several high-speed hardware 
switches have been described [22]. A second issue, the need 
for enhancing the performance and the functionally of the 
network control layer, is much less explored. 

In this paper we explore this second issue, specifically 
focusing on the lessons that we have learned during the design 
and implementation of the PARIS network [8]. We believe that 
most of our conclusions are general and can be applied to any 
high-speed packet network. 

The early stage of  PARIS was described in [8]. A subsequent 
paper [lo] describes a successor to  PARIS called plaNET. 
(For clarity, we only refer to PARIS though plaNET is largely 
similar as far as distributed control is concerned.) Both works 
also include some initial ideas regarding distributed control. In 
the current paper we describe for the first time the distributed 
control functions and the way  they  fit into the complete 
network. We elaborate on the way  in which network control 
performance can be gained by exploiting specialized hardware 
features. In particular, we introduce new multicast features 
implemented in hardware and exploit them in performing 
fast and computation efficient information distribution for 
different network control tasks. We also describe some new 
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algorithmic ideas that save computation overheads associated 
with previous network control solutions. Our performance 
measures are stated in terms of worst case time and processing 
costs associated with the distributed procedures used for 
network control. 

Let us now describe the problems solved by the distributed 
control architecture presented in this paper. The control pro- 
cedures of the PARIS network facilitate virtual circuit routing. 
Thus we have the notion of  a “connection” or “call” being 
established between a source and a destination (a call can 
carry either real-time or nonreal-time traffic). For each call, 
all the traffic  of that call (in one direction) traverses the same 
path through the network. The control process is as follows. 
Requests for “calls” arrive at nodes asynchronously. Each call 
has associated with it some parameters such as average packet 
rate, burstiness, tolerance for packet loss, etc. Calls are either 
denied access to the network (“blocked”) or accepted into the 
network. If accepted, a call is provided with a route that has 
adequate capacity to handle the request. The mechanisms used 
by each node to perform these functions (acceptldeny calls, 
provide a route, and guarantee/reserve bandwidth) are referred 
to as the control procedures of the network. In  a similar way, 
existing calls might request for additional network resources 
along the established call path (or release some of the resources 
not used any more). 

Traditional data networks typically employ distributed con- 
trol but do not guarantee availability of bandwidth to calls. 
They are usually too slow to be extended to perform fast 
setup and takedown of calls or bandwidth reservations. Their 
distribution of routing information is usually computational 
inefficient because of an extensive use  of  a software based 
hop-by-hop information flood mechanism. Control procedures 
in common carrier networks (circuit switched networks) deal 
with capacity allocation but are typically more centralized, rely 
on the availability of significant computing power and support 
rigid types of reservations which do not change in time. A 
key contribution of PARIS is showing that by employing 
hardware speedups and new algorithmic techniques in the 
control flow it is possible to provide performance guarantees 
and considerable speedup of the reservation operation while 
preserving the fault tolerance and growth capabilities of  a dis- 
tributed control architecture. In particular, we develop a  new 
topology and utilization information update algorithm which 
employs a hardware based broadcast over a tree replacing the 
traditional hop-by-hop software flooding employed in previous 
architectures such  as ARPANECT [ZO] and  APPN [ S  1. The 
advantages of the new approach are much faster distribution of 
the topologyhtilization information and a major reduction in 
the processing involved. We develop fault-recovery and load 
balancing mechanisms to insure its operation under topological 
changes and rapid changes of network load. In addition, we 
develop a new call setuphakedown procedure which employs 
another hardware multicast mechanism and accelerates the 
bandwidth reservatiodrelease process compared to previously 
developed hop-by-hop software procedures such as the one 
in APPN [5 ] .  We also incorporate additional mechanisms to 
efficiently handle large number of calls, failures over the call’s 
path, and graceful recovery of nodes. 

The work presented in this paper is more than a “paper 
study.” Considerable prototype implementation has been done 
and much more is planned. A prototype PARIS network, 
operating at switching speeds of over 1 Gbls, has been built 
and tested within a laboratory environment. More realistic 
deployments are underway. For example, a PARIS network 
is being installed in the AURORA testbed. Many of the 
mechanisms described in this paper will be implemented and 
experimentally validated as part of that project. The AURORA 
project is part of the NSFDARPA gigabit networking pro- 
gram, under the auspices of the Corporation for National 
Research Initiatives. It will involve the construction of a 
gigabiusecond network that will link together four research 
centers in the Northeastern United States (MIT, University of 
Pennsylvania, IBM, and Bellcore). Other field trials include 
a trial with Rogers Cable Services in Toronto and  a Trial 
with Bell South Services in Tennessee. It is likely that the 
results of this trials will provide considerable experience 
and understanding of how distributed control algorithms will 
operate in  future networks. 

The overall PARIS architecture is described in [8] and 
its followup plaNJ2T is described in [lo]. Briefly, PARIS is 
a high-speed packet-switching system for integrated voice, 
video, and data communications. The system uses simplified 
network protocols in order to achieve the low packet delay and 
high nodal throughput necessary for the transport of real time 
traffic. The packet handling functions are implemented mainly 
in dedicated high-speed hardware, with only some low-speed 
control functions requiring software implementation. PARIS 
uses variable sized packets with automatic network routing. 
Automatic network routing (ANR) is a form of source routing 
where each packet contains an ANR header composed of  a 
concatenation of link identifiers. It also supports (in hardware) 
a rich set of alternative routing schemes which include tree 
multicast, label swapping (including ATM VCNP formats), 
copy mechanisms, and more. We later elaborate on the specific 
routing schemes which are exploited by the network control 
procedures. Details on all the routing schemes including the 
ones which are not described in this paper can be found in [lo]. 

Note that the paper deals with distributed control algorithms. 
Therefore, we mainly present performance results from a 
worst case complexity perspective, typical in the algorithmic 
literature. Average case results are very difficult to obtain 
analytically and are very rare and limited in the algorithmic 
literature. Past and current lab prototypes as well as simulation 
studies are very limited ( 3 4  nodes) for a performance study of 
the network control software and are used mainly for validity 
and correctness test. Therefore, we believe that comprehensive 
performance results will only come when the network is 
actually used  in  a production environment. 

The rest of the paper is organized as the following. In 
Section I1 we describe the model of the communication 
subsystem assumed for the operation of the network control 
algorithms. In particular, we discuss the hardware supported 
functions that can be exploited for faster control. In Section I11 
we describe the overall structure of the network control archi- 
tecture. We explain the notion of the “bandwidth reservation 
cycle.” In this section we list and motivate the distributed algo- 
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Fig. 1 .  Node structure. 
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Fig. 2. Automatic  network  routing. 

Lt’ Li’ 
rithms that are used for the network control. Next we address 
the different components of’ the network control. Section IV 
briefly summarizes the route computation procedure assuming 
a correct topology database is available. Section V describes 
the distributed procedures used to assemble and update the 
topology database at every node. (Details of the algorithms 
are described in the Appendix.) We also address new aspects 
such as the load balancing of update messages. Section VI 
addresses call setup, maintenance, and takedown. We dcscribe 
the distributed algorithm used and the method of traclung, 
updating, and recovering local load parameters. We summarize 
the paper in a short conclusion section. 

11. NETWORK MODEL 
Each  PARIS node consists of two components, a fast 

hardware switching component (the switching subsystem ( S S ) )  
and a slower controller (network control unit (NCU)) ( see  
Fig. 1). The switching subsystem performs the packet routing 
functions while the NCU performs the more complex control 
functions. Bidirectional transmission links are attached directly 
to the switching subsystem. The NCU is also attached to 
the switching subsystem by a bidirectional link. We assume 
that each link has a finite, nonempty, set of identities (ID’s). 
The hardware permits each link’s ID set to be configured 
dynamically under software control. In this paper we assume 
that the various ID sets are defined in order to perform the 
following functions.’ 

1) Automatic  Network  Routing  (ANR; see Fig. 2): This 
requires every link to own an ID that is unique within its 
switching subsystem. If a certain node (where no ambiguity 
exists, we  say “node” instead of “the NCU in a node”) wishes 
to send a packet to a certain destination node and if it has 
knowledge of a path to that destination node, it can send the 

’ The following intermediate muting  functions are only a subset  (used  by 
the control algorithms of this paper) of the set of routing functions (or modes) 
implemented hy plaNET.  The interested  reader is referred to [ 101 for more 
details. 
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Fig. 3. Selective  copy. 

Fig. 3. Multicast. 

message by prefixing the data with a string that is composed of 
the concatenation of all the link ID’s along the computed path. 
Used ID’s are stripped off before the packet is forwarded. 

2)  Selective copy (see Fig. 3): Assume that for each link 
attachment (excepting the  NCU’s attachment) we define a 
“copy ID’ that is identical to the (primary) link ID except for 
its most significant bit (MSB). For each link, both the copy 
and the primary link ID’s are configured as members of the 
ID set. By also assigning all of the copy ID’S to the ID set 
of the NCU’s attachment, it is possible to achieve a selective 
copy function. A packet may be copied by several preselected 
nodes along a path  by substituting the copy ID for the normal 
ID for these preselected nodes, e.g., if MSB = 1 a copy will 
be received by  the  NCU of that particular node; if MSB = 0 
no copy will be delivered. In Fig. 3, MSB = 1 is marked by 
an underscore of the respected link ID. 

3) Multicast (see Fig. 4): If more than one link recognizes 
the same ID (marked as “T” in Fig. 4), it is possible to perform 
a multicast within the node. This feature is exploited in the tree 
broadcast procedure used for topologylutilization update (see 
Section V.A for more details). We denote this scheme also 
as tree  multicast as  it is correctly operated if a tree of links 
is labeled with no loops. We replace the term multicast by 
broadcast in case the multicast covers the complete network. 

Note that these routing mechanisms are currently parts of 
the PARIS/plaNET architecture. However, other architectures 
such as ATM or frame relay can implement them (possibly in 
hardware) just above the cell or the frame layer. 

As previously mentioned, the basic unit of traffic is a 
“call” or a “connection.” From the viewpoint of the control 
procedures, a call is defined to  be a stream of packets from 
some external source with a specified average rate, variance, 
service requirement, etc. The duration of a call can  be either 
long (more than minutes for a phone call or video connection) 
or short (for the duration of a fast file transfer). We enforce that 
each source restricts itself to the specified parameters through 
an input rate regulation scheme [SI. The “leaky bucket” 
scheme proposed in [22] and the credit manager scheme used 
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in SMDS A [21] are examples of input rate regulation schemes. 
The PARIS rate-control mechanism is a buffered version of 
previously suggested leaky bucket scheme with additional 
components (e.g.,  a spacer) as  is described and analyzed in 
(41, [21], and [15]. In general, the scheme guarantees that the 
long term average rate does not exceed the prespecified rate 
of the connection. Over shorter periods, it permits bursts at a 
much higher rate which is constrained by the maximum speed 
of the communication links in  the path. 

111. CONTROL CYCLE 

The PARIS approach to connection control is a decentralized 
one. This design choice is motivated by the fact that PARIS is 
aimed at private networks rather than public carrier networks. 
For fault tolerance and performance reasons, it is well accepted 
that for such networks decentralized control is preferable to 
reliance upon one or more central controller(s) [5] .  Thus, 
in the PARIS system, every backbone node participates in a 
set of distributed algorithms which collectively comprise the 
connection control of the system. 

While distributed control mechanisms are commonly used 
in most of today’s data networks [ 5 ] ,  [20], they do not deal 
with traffic that requires service guarantees. In particular, 
they  use hop-by-hop software based “flooding” algorithm to 
distribute the local states and loads. While this is acceptable 
in the environment of relatively slow data networks, in the 
environment of high-speed networks (high rate of new calls 
and rapid change of network load) such schemes will result 
in excessive overhead and high information latency. Similarly, 
they use hop-by-hop call setup and takedown procedures with 
similar consequences. 

As mentioned in Section 11, an input rate regulation is used 
to regulate the traffic rate and it is assumed that all traffic 
that passes through the throttle is guaranteed a certain level of 
service. Thus, before admitting a call into the network, some 
guarantee must be provided that the communication capacity 
required by the call is available. If not, the call must be denied 
access into the network or “blocked.” 

In PARIS, we use a distributed route selection mechanism 
based on a replicated routing topology database similar to 
the one in ARPANET [20] and APPN [5].  Basically, each 
node maintains a complete routing topology database with link 
weights reflecting the traffic over each link (utilization). When 
link weights change substantially updates flow  to every node 
using  a broadcast algorithm? 

At the call setup time, the source node obtains the param- 
eters associated with the new call. These parameters define 
the type of call, the destination, and the parameters of the 

bitlsecond  switches) are presented in the routing topology database.  Further- 
*Note that  in PARIS, only network nodes  (which are the set of giga- 

more, only network nodes are  required to participate  in  the  maintenance of 
the  routing topology database.  Therefore in the PARIS environment (a private 
network)  the  routing topology ddtdbase is typically  limited to less than a 
hundred nodes.  Similarly, the topology database consists  of the collection 
of hackhone links (gigabitlsecond  links)  whose number is also not too 
large. However,  similarly  to the ARPANET case and using the algorithmic 
improvements we describe later on, we don’t  view the size of the  database or 
the  amount  and  rate of database  updates to be a  practical limiting factor in a 
public high-speed work. 

input throttle that is associated with this connection (speci- 
fying either directly or indirectly the average capacity of the 
connection and the level of burstiness). Typically, these traffic 
parameters are based on traffic type (e.g., a voice call requires 
a steady 64 kb/s) and may be changed dynamically during the 
operation of the connection. The source node then computes 
a path based on its local topology database and generates the 
ANR field from source to destination and back. The source 
node uses the information in the local topology database to 
ensure that the chosen route is capable of carrying the traffic 
and providing the level of service required by the traffic type. 
The computed information is then sent to the adaptor that 
actually interfaces with the source of traffic. The call setup 
procedure is then initiated. As part of the procedure, an end- 
to-end call setup packet flows over the path and is copied by 
the intermediate nodes along the path. Based on  the bandwidth 
information in the call setup packet, each of these nodes 
updates its database of the bandwidth utilization on its link 
attachments. This updated information may change the link 
weights and trigger an update broadcast. 

If no suitable path can be found between source and 
destination, the call will be blocked. The scheme provides 
control of the path at the source and obtains relatively efficient 
paths. However, because the information about remote link 
utilization takes a nonzero time to propagate through the 
network, there is a possibility of some unnecessary blocking 
caused by temporarily inaccurate information in the routing 
topology database. To minimize this inaccuracy, in PARIS, 
we employ an efficient way for performing the topology 
and utilization update both in term of speed and processing 
overhead. A fast tree broadcast function is employed which 
permits a direct broadcast of information to all network 
nodes with no software involvement at the intermediate nodes. 
Using the speed of the network hardware, this fast broadcast 
reduces the problem of transient inconsistencies in the routing 
topology databases. This new feature also reduces the message 
processing overhead by restricting the broadcast to deliver only 
a single copy of the information to every node. Therefore, 
a considerable amount of overhead is saved compared to 
traditional “flooding” mechanisms which may deliver multiple 
messages to each node and require software processing to 
ensure that duplicates are not forwarded [5] ,  [20]. (See Section 
V.) 

The process of connection control can be captured in the 
form of  a “control cycle” shown in Fig. 5. The cycle represents 
the flow  of information in the system. The cycle starts with 
a request for a  new connection. This request contains the 
call parameters. The information used to compute a route 
for the call comes from the local topology database which 
also contains link weights including link utilizations. This 
information is obtained through the topology and utilization 
broadcasthpdate algorithm. The trigger for the utilization 
update comes from the local link weight computation of each 
node. These weights are computed from the knowledge of  the 
call parameters for each of the calls that traverse the links, 
knowledge that is gained during the call setup process. The 
initial source of the parameters is the connection request. This 
closes the cycle. 
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multiple (“stretch factor”) of the minimum possible path length 
the call is admitted into the network. (The “stretch factor” 
is determined by the current load conditions and input call 
parameters). Otherwise, the call is blocked. (This may require 
some calls to be blocked even though resources are available, 
in anticipation of future calls which are expected to make 
better use of the resources.) Further investigation of this idea 
is being conducted [I]. 

Local link wmight 
computotion 

ode update V. INFORMATION UPDATE 

Fig. 5. Control cycle. 
A. Overview 

Note that two components of the cycle involve interactions 
among several nodes. These are the call setup process and the 
topologyhtilization update. We use the fast copy and the fast 
broadcast capabilities of the switching subsystem hardware to 
speed up the operation of these two critical components of the 
control cycle. We also employ novel algorithmic ideas in order 
to reduce to processing load required for these two tasks. In the 
rest of this paper, we discuss briefly the various components 
of the cycle. Note that as the task of utilization update is a 
subset of the the topology update task we focus in the rest of 
the paper mainly on  the latter. 

IV. ROUTE COMPUTATION 

Recall that since the full topology and link utilizations are 
known at each network (NCU) node, this is essentially a local 
operation. This procedure also determines whether or not a 
given call is permitted access to the network. While the scheme 
is basically a collection of heuristics, the underlying “optimal- 
ity” criterion or long-term objective is to maximize network 
throughput subject to the maximum loss probability allowed by 
each packet. (Packet loss increases with throughput.) Unlike 
the case in traditional networks, minimizing delay is not an 
objective, since in a fast network a packet sent  and not lost will 
anive within the delay conditions of even very time sensitive 
applications. 

We use several “rules of thumb” to guide us in the develop- 
ment of the route computation scheme. For example, the route 
computation method should attempt to find a path with the 
minimum number of hops as this minimizes the overall use of 
network capacity. Thus, calls with excessive capacity demands 
should be denied access to the network. We define “excessive” 
by comparing the number of hops in the current route with the 
“minimum hop” route. This Criterion is particularly important 
under high load conditions and for calls with large holding 
times. 

The resulting scheme is sketched as follows. Based on the 
characteristics of the call the first step is to identify the set 
of links that can accommodate the call. (It is assumed that a 
computational procedure is known whereby given the charac- 
teristics of the call, and link weights in the topology database, 
it is possible to compute the expected packet loss-the primary 
parameter in determining acceptability of a link.) Among 
the subset of acceptable links, a minimum hop path is thcn 
chosen. If the length of the chosen path is within a permitted 

Each local node is responsible for determining the band- 
width utilization of its adjacent links, for determining when 
to inform remote nodes of changes in utilization, and for 
distributing this information to remote nodes. Distributing this 
information is called a utilization broadcasthpdate. A similar 
task is the topology update where the information about the 
active and inactive state of the links is distributed. In fact, the 
state of the link in the routing topology database and  in the 
topologyhtilization update messages includes several fields in 
addition to link activity state and link utilization. These fields 
include indication whether the link is a part of the hardware 
multicast tree and additional link weight characteristics to he 
later discussed. 

For both updates it  is possible to use a conventional flood- 
ing based mechanism as in ARPANET [20]. However, the 
ARPANET algorithm has some deficiencies that make it sub- 
optimal for this purpose. First, it delivers a copy of every 
message over every link (which can  be translated to O(lE1) 
overhead per topology item change, where E is the set of 
links). This means that each node has to process a large amount 
of redundant packets. (It is enough that each node receives 
only one copy of each message.) This considerably limits the 
effective size of the distributed database and the rate at  which 
database changes can be processed. Second, this algorithm 
is hard to implement in fast hardware. (Remembering which 
message has been received before is a task that hardware 
switches currently cannot perform fast and cheaply. Thus the 
relatively slow NCU in each node must decide whether to 
forward a received message, or to discard it as a copy.) Thc 
propagation of the update messages hop-by-hop through the 
software layers makes the algorithm too slow  to operate in a 
rapidly changing traffic environments (this can be translated 
to O(lVl) delay where V is the set of nodes). 

The selective copy mechanism can be used to perform a 
multicast or broadcast (e.g., through a path that traverses a 
depth first search. See, e.g., 1141.) This, however, has draw- 
backs in that it results in very long paths (and consequently 
long message headers) and it requires that  the sender must 
know a route that reaches all the recipients of the message. 
When topology information itself is delivered by this process 
such a route may not be available. Variations  of  this approach 
are discussed in [I21 and found to be inefficient. 

The method used in PARIS employs a hardware multicast 
mechanism which dclivcrs messages directly from the source 
to all potential recipients with no software involvement in 
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the transfer. Moreover, only a single copy of each message 
is delivered to the endpoints. Hence, the processing cost is 
only O(lV1) and the delay is only a function of the hardware 
switching and the propagation delays in the network. 

The multicast message mode was introduced mainly for this 
purpose. Recall from Section I1 that a link may have multiple 
ID’s (labels) and that these ID’s can be changed dynamically 
by the local NCU. Suppose that some link adaptors, in various 
nodes, have (among other labels) the label T.  Assume further 
that the collection of the T labeled links forms a tree. This 
tree is used for a fast hardware broadcast as follows. When a 
node wishes to perform a broadcast, it generates a multicast 
type message, using label T. When this message arrives to 
the switching subsystem, it  is forwarded over all links labeled 
T of that switch except the link over which it was received. 
Note that this broadcast will reach every node on the tree, and 
will terminate. 

Topology updates are triggered whenever a node senses the 
failure or recovery of an adjacent link. Utilization updates are 
triggered whenever the node senses that the utilization of an 
adjacent link has changed substantially [ 11 from the time of the 
previous update. Utilization updates are also sent periodically 
(as described below) to guarantee reliability. 

The multicast type messages as defined above have no built- 
in error recovery mechanism. There is some finite (very small) 
probability that a multicast message sent on the tree will 
not arrive at some of its destinations. In both the topology 
and the utilization update tasks we make use  of a “backup” 
periodic broadcast of utilization updates to achieve reliability. 
The periodic approach is suitable for such tasks because it  is 
important to receive only the most recent link information (pre- 
vious updates becomes obsolete once a new one is received). 
(Note that a link utilization message is also implicitly a link 
topology message; a link that is utilized must be active). The 
periodic broadcast is achieved by having each node maintain 
a timeout period and performing a “periodic” broadcast if no 
event driven utilization broadcast has occurred within this time 
period. Note that we expect utilization updates to  be  very 
frequent and do not expect this periodic mechanism to  be 
triggered very often. 

As we would like to use a hardware tree broadcast for the 
topology update protocol, we need a mechanism to enable the 
nodes to label their adjacent links as tree links or nontree 
links correctly and consistently. Since every node maintains a 
local network topology database, it seems that it could have 
computed a tree according to some procedure that is consistent 
among all nodes (e.g., a minimum spanning tree) and thereby 
know how to label its adjacent links (either a tree link or 
a nontree link). This simple approach does not work in a 
dynamically changing network as it may result in transient 
loop5  in the tree labeled links. This will cause looping of 
messages through the hardware and excessive traffic in the 
network. Thus, we introduce a tree maintenance procedure 
that uses network topology but imposes careful coordination 
between the nodes in order to ensure that transient loops do 
not occur. 

Thus our complete information update protocol is composed 
of two modules. The first module, topology update protocol 

Fig. 6. Relations of topology update and tree maintenance routines. 

(together with the utilization update) broadcasts over the tree 
computed by the second module, the tree maintenance proto- 
col. On the other hand, the tree maintenance module uses the 
topology knowledge in order to maintain the tree (see Fig. 6) .  
That is, when the tree is disconnected the replicated topology 
database is used to locate the edges that will reconnect the tree. 
The topology update and the tree maintenance algorithms are 
described in Appendix A. 

Let us comment that a somewhat similar tree maintenance 
protocol appears in [2]. However this protocol cannot make 
use  of a hardware broadcast, since it assumes reliable delivery 
of messages (that our basic broadcast does not provide). Also, 
the protocol of 121 is more complex than required since it 
does not permit the  use of sequence numbers (used here). 
While sequence numbers may lead to theoretically unbounded 
message length, for practical purposes, 64 bits of sequence 
numbering is more than enough. The use  of sequence numbers 
simplifies the tree maintenance and topology/utilization update 
protocols and the data structure of the topology database. 

The topology knowledge also enables us to adjust the tree 
easily to be a minimum spanning tree (rather than any spanning 
tree). It also helps us to achieve a stabilization of the tree even 
in the presence of some less reliable links (their weights will 
be increased to reflect their instability). 

B. Load Balancing 
In a high-speed environment where links are very reliable 

and  of very high bandwidth, we expect utilization information 
to change at a rate which is several orders of magnitude faster 
than the link topology information (seconds versus hours or 
days). Therefore, the utilization update messages dominate the 
total update traffic and are the main concern of this section. 

A key issue to ensure avoidance of congestion in the process 
of utilization update is that of load-balancing. If every node 
is permitted to send utilization updates at any time we may 
run into potential problems. It is possible that even if the 
processing rate at a node is on average adequate to cope with 
the total rate of updates, there might be periods in which 
the number of concurrent updates exceeds the processing 
speed causing the update message queue to become congested. 
Adding to this problem is the fact that utilization updates at 
different nodes might be correlated. The reason for that is the 
introduction (setup) of high-bandwidth calls through a long 
path of  nodes. Since the call setup is almost instantaneous at 
all these intermediate nodes they may issue a utilization update 
at almost the same time. Another scenario is a failure of a high 
bandwidth link which causes rerouting of a large number of 
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calls all within a short period. This means that even though 
our broadcast media is not a collision type we would prefer to 
spread updates over time in order to guarantee load-balancing. 

We employ a scheduling mechanism (BRAM) that is usually 
used for scheduling transmissions in a shared media network 
(radio or coax) in order to avoid collisions see [ 7 ] .  In such a 
scheme the scheduling is done by ordering the transmission 
of nodes in a round robin fashion. Nodes that haw nothing 
to transmit are skipped dynamically by detecting the absence 
of their transmission. 

The implementation of the BRAM algorithm in the PARIS 
network is straightforward. The ordering of the transmission 
can be done locally by each node using  its replica of the 
topology database and the topology of the broadcast tree. The 
node can also estimate the propagation delay through each link 
and  in particular the tree links. Inconsistencies between the 
replicated topology databases can be ignored since the network 
can tolerate “collisions.” The BRAM algorithm works better if 
the  sum of the propagation delays between consecutive nodes 
of the round-robin schedule is minimized. If the broadcast is 
performed on a general network this would pose a difficult 
graph problem. (It is NP Complete [17].) However, since the 
broadcast is accomplished over the hardware based tree this 
problem is solved using a simple depth-first-search procedure. 
Since our broadcast mechanism is collision free and the delays 
are only estimated, the BRAM algorithm is only approximated. 

VI. CALL  SETUP,  MAINTENANCE, AND TAKEDOWN 
Traditionally, in virtual circuit based networks, (Le,, TYM- 

NET, X.25 etc.) call setup and termination procedures are 
used for two different tasks. First, the intermediate nodes must 
update their label swapping tables in order to activate the 
intermediate switching operation for a specific call. Second, 
the two end-points must cstablish an end-to-end connection 
and exchange session parameters (i.c., window size, packet 
size etc.). 

In the PARIS system, since we  use  ANR routing. there is no 
need for any table update to allow the physical communication. 
The endpoints are able to communicate once the routes have 
been computed. However, for bandwidth management reasons 
we  use the call setup/takedown procedure as the mechanism to 
inform the intermediate nodes about the amount of bandwidth 
that is allocated to the new call. (Recall (Section V) that 
the nodes track the amount of reserved capacity for each of 
their local links and broadcast a utilization update if some 
significant change has been identified.) 

Another task of the setup procedure is to reconfirm the 
availability of the reserved bandwidth for the  new call. This 
task is necessary sometimes because of the potcntial latency 
in the operation of the bandwidth control cycle. Calls which 
are concurrently routed from different sources may allocate 
capacity from some link without being aware of each other. 
Typically, this will cause no harm if the call bandwidths are 
small compared with the residual available capacity. However, 
for congested links or high bandwidth calls (such as high 
quality video calls) this might cause an overutilization and 
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We introduce the concept of a call maintenance procedure 

1) to track in real time the bandwidth being reserved and 
released in order to pass significant load changes to the 
topologyhtilization update mechanism; 

2 )  to  notify the endpoints of a call about failures along the 
call’s path that require a call drop or a switchover to  an 
alternate path; 

3) to release the reserved capacity of explicitly terminated 
calls (with explicit take-down messages); 

4) to release eventually the reserved capacity of implicitly 
terminated calls. The absence of an explicit take-down 
message can be caused by 

in order to satisfy the following requirements: 

a) failure of the endpoints before the normal termi- 
nation of the call; 

b) LinWnode failures that isolate the intermediate 
nodc from the endpoints of the call. 

In addition to the above we use  the call maintenance proce- 
dure to enhance the fault-tolerant operation of  the network. 
Since the switching subsystem is a stand alone hardware 
module, independent of the NCU, the failure of the NCU 
does not necessarily impact the  flow  of steady-state traffic of 
existing calls. (This failure, however, will prevent the setup of 
new calls through this node). Thus. a recovering NCU (or a 
backup NCU) may not “know” the reserved bandwidth and  the 
actual capacity used  in its links. We introduce a mechanism 
by which such a processor can first  regain the reservation 
information and  then rejoin the call setup process. 

A. Setupflakedown 

The call setup procedure is composed of two complementary 
phases. They are described in detail in [13]. In the  first 
phase the source of the call notifies  the destination and the 
intermediate nodes along the path of the new call and its 
characteristics. This phase is accomplished by the source 
sending a direct message to the destination which is also 
copied by the intermediate nodes (using the selective copy 
mechanism). 

The second phase includes a call confirmation process 
in which a confirmation message is transferred through the 
intermediate nodes back  to the source. Each node checks 
whether the reserved capacity is indeed available. Otherwise it 
will convert the confirmation message into an abort message. 
The confirmation phase is optional in  the sense that in most 
cases the source does not wait for the confirmation message 
before end-to-end communication is enabled. However, the 
reception of  an abort message will cause the session to 
be aborted immediately. (The confirmation process can be 
accelerated by having the  nodes  on the way  send confirmations 
in  parallel  using ANR; alternatively, some nodes along the way 
may accumulate some downstream confirmations, and  send a 
single consolidated confirmation 1131.) 

The same procedure of call setup is also used for changing 
the required bandwidth during the connection active period. It 

hence excessive packet loss. can also be  used to poll  the nodes over the path regarding the 
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amount of bandwidth available over the path. Such use of the 
same setup mechanism is described in [lo]. 

The call takedown is very similar to the call setup without 
the confirmation phase. The reserved capacity is released. 
Since the call might be terminated by external events such as 
failures along the path we must have other ways to takedown 
the call and to release the reserved capacity in such events. 
These mechanisms are discussed in the following. 

B. Call Maintenance 

In the call maintenance procedure each source send peri- 
odically refresh messages which include the call parameters. 
These messages are acknowledged immediately by similar 
messages from the destination. These acknowledgment mes- 
sages are also copied by intermediate nodes. The basic as- 
sumption of this scheme is that in the absence of failures, 
the packet loss probability for control messages is very small 
and thus the probability that some fixed small number of such 
consecutive messages (K in the range of 2-5) will be lost is 
practically negligible [l I]. 

The periodic message exchange is used in several ways. 
First, it serves as a path integrity check for the endpoints of 
the session. The absence of a refresh message indicates to the 
endpoints a failure along the path or the failure of  the other 
endpoint. Second, these messages allow the intermediate nodes 
to track the existence of calls and the amount of bandwidth 
reserved for these calls. (This will be further explained later 
on). This requires the copy of the refresh messages by the 
NCU. The time requirements for this second task are less strict 
than for the first one. Therefore, only a certain subset of the 
refresh messages should be marked as messages to be copied. 
Third, this periodic transmission of the call parameters allows 
nodes to refresh their reservation knowledge or automatically 
recover it after a NCU crash just by processing the copied 
refresh messages for some period of time. 

Tracking Bandwidth Reservation: There are two basic ap- 
proaches to the reservation refresh procedure: 1) explicit; 
and 2) implicit. In the explicit refresh the NCU maintains a 
call table in which each call ID has an explicit entry that 
describes the amount of capacity reserved. A timeout period 
is maintained for each entry. After the reception of a refresh 
message for a specific call ID the timer for that entry is 
reset. If after some predetermined number of refresh periods 
(considerably larger than the above K) no refresh is received, 
the call is considered terminated and its entry is removed from 
the table. We assume that a similar but shorter timeout period 
is used by the end-points so they will drop the call before 
the intermediate nodes. This ensures that actual transmission 
ceases before the call capacity is released. 

The drawback of the explicit refresh is that a large amount 
of memory and processing is required. A typical high-speed 
link (say SONET  STS48 which is approximately 2.4 Gbk) 
may carry over 40000 64kb/s phone calls. The duration of a 
voice call is usually around 200 s which leads to a refresh 
time for  the reserved capacity of about 1-10 s. Thk results in 
400040000 such operations (which include finding the entry 
in the table, resetting the timeout flag, and other overheads) 
per second per link and a table size of 40 OOO entries per link. 

Fig. 7. Explicit and implicit update. 

Thus, we would like to avoid the use of explicit refresh for 
calls that use only a small fraction of the link capacity. For this 
majority of calls we employ an alternative implicit approach 
which is less exact but also less computationally expensive. 
The idea is that over some sufficiently large ‘’window”  of time 
(which will depend on the maximal difference in the delay 
between consecutive packets) the number of refresh packets 
that will  be received is fairly constant. (In our example the 
window can be set to I O  refresh periods; using the law  of 
large numbers, for 40 000 calls the number of refresh messages 
received in a window will be very close to 10 x 40000 with 
very high probability). Here, we do not have to maintain an 
individual table entry per call but simply need to keep the sums 
of the reserved capacity for the last window. A weighted sum 
of these short term estimations serves as the node estimate for 
the link utilization. 

A potential problem exists since some calls may be of a very 
high capacity and therefore the total implicit sum will depend 
much more on their refresh messages than on the messages of 
the other calls. This causes the law of large numbers not to hold 
for the sum (it will still hold for the total number of refresh 
messages). In  PARIS,  we make such calls use the explicit 
refresh procedure and these refresh messages are not taken into 
account for the implicit summation. A typical rule is that if a 
call requires more than a% of the total link capacity (say l%), 
then this call will be explicitly maintained in the reservation 
table and  will not be part of the implicit summation. Thus, we 
have a strict upper bound on  the number of calls we maintain 
explicitly (say 100). The resulting hybrid scheme is illustrated 
in Fig. 7. A different approach would be to break the large ca- 
pacity calls into smaller pieces and instead of sending a single 
message per refresh period to send a multiplicity of refresh 
messages each carrying a fraction of the total call capacity. 

A further way  of reducing the computational burden of the 
NCU is to introduce additional hardware associated with each 
link. Since the processing is trivial, the refresh messages can 
be processed on-the-fly by some special purpose module which 
will be part of the link adaptor hardware. Only sums will be 
reported to the NCU. 

VII. CONCLUSION 
We have described the basic components of the control layer 

of the PARIS Gb/s experimental network. The main conclu- 
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sion is that in the new environment of high-speed integrated 
network fast links and switches are not enough to provide 
a satisfactory solution for the heterogeneous traffic demands. 
New methods and mechanisms should be developed to cope 
with the increased demand for fast call setup, reservation, and 
changes of call parameters. The PARIS solution consists of 
a set of distributed procedures which exploits the hardware 
routing mechanisms and algorithmic methods which accelerate 
the call control process and avoid excessive processing as 
much as possible. In particular, we have described efficient 
methods for updating distributed topology and utilization 
databases and for setup and maintenance of calls by the 
intermediate nodes. 

Such schemes can also be employed by other high-speed 
networks such as ATh4-based systems. 
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APPENDIX 
TOFQLOGY  UPDATE ALGORITHM 

In subsection A we describe the tree maintenance module 
assuming that the topology maintenance module ensures that 
nodes on a tree know eventually the topology of their tree, 
and neighboring edges. In subsection B we explain how this 
assumption is realized. 

We use the graph representation of the network and refer to 
the actions of the NCU as being actions of nodes. 

A. Tree Maintenance 
For any link (v, u) the only node that can put it into the tree 

is its endpoint node v. (Node u does similarly for edge ( u ,  u), 
so each edge has two entries in the tree description.) This is 
done by 1) updating the local topology map to  show that this 
is a tree link; 2) putting the tree’s label  on the adaptor, in the 
switch ( S S ) ,  so that the switch will know to forward update 
messages over it; and 3) notifying the other nodes so that they 
too can update the status of the link (to be “tree”) in their local 
topology map. Tasks 2) and 3) are performed by generating 
a topology change (i.e., the edge changes from nontree status 
to tree status) which will be handled by the topology update 
protocol. A node w that gets a notification from the topology 
update protocol about an edge (u, u )  becoming a tree edge 
updates its topology map. Similarly a topology update may be 
either the failure or the recovery of a link, or the fact that it 
has stopped being a tree link. 

Note that when the tree is temporarily disconnected (e.g., 
due to a failure) it is actually a forest of node-disjoint trees, 
rather than a single tree. The protocol strives to make this 
forest into one tree that spans the whole (connected component 
of the) network. 

The algorithm maintains each tree a rooted directed tree. 
Each node remembers which of its tree edges leads to its Parent 
(the parent is the neighbor node in the direction toward the 
root). The protocol keeps the values of these Parent variables 

(in different nodes) consistent in the sense that if node 71 is 
the Parent of node ‘u, then 71. is not the Parent of v .  (The one 
exception is the time that a message from u is on its way to 
v to transfer the parenthood from u to v.) Each tree has a 
single node with no Parent. This node (whose Parent = nil) 
is the tree root. It coordinates the effort of the tree to merge 
with another tree. This merging is repeated whenever possible. 
Thus, if the network is stable for a reasonable amount of time 
all the trees in a connected component of it merge into one 
tree. (It has been estimated that in  very large SNA networks, 
of few thousands nodes, a topological change will take place 
about every 1 hour.) 

Using the forest description in its own database, a root r 
knows which nodes belong to its own tree. Using  the topology 
database map root T can also find whether there is an edge 
connecting a node in its own tree to a node which is not 
a member of the same tree. Furthermore, we assume that 
each edge has a unique weight, known to both its endpoints. 
This can  be achieved by using concatenation of  the names of 
its endpoint nodes as the least significant part of the edge’s 
name (a tie breaker in case that all other field are equal). 
The description of the more significant parts of the weight is 
deferred to Section A.l.l.  

Let ( k ,  j )  be  the edge with the lowest weight among those 
edges connecting root r’s tree to a node not in this tree. (Call 
it the minimum outgoing edge.) If k # c, then the “rootship” 
(the state of  being the root) is transferred to k hop-by-hop 
by sending root-change messages and changing the values of 
the Parent variables (the edge which leads to the root) in the 
nodes on the way from T to k .  Note that during this transfer the 
minimum outgoing edge may change (by the failure of edge 
( k !  j ) ,  or by the recovery of another edge). This is detected 
by the current root that transfers the rootship to the endpoint 
node of the new minimum edge. 

When the root is the endpoint of the minimum outgoing 
edge (according to its local database), it negotiates merging 
with the tree on the other endpoint of the edge. For the merging 
it is required (similar to [16]) that both endpoints will be the 
roots of their trees, and that both will agree on the merging. 
(This is introduced in order to prevent entering cycles into the 
tree.)  The root with the lower identity suggests the merging, 
and waits until the other endpoint agrees. 

Similar to [2] this suggestion is canceled in the case that the 
edge fails. It may also be canceled when a lower weight edge 
recovers. In this case the suggesting root must first  ask the 
other root whether the suggestion has already been accepted. 
If the other root has already agreed to the suggestion, then it is 
not canceled. Otherwise the suggestion is withdrawn, and the 
suggesting root is free to suggest a merge over another edge. 

When both sides agree to the merge the  topology update pro- 
tocol is invoked (to exchange topology information between 
the nodes, and to  notify about the new edge). Finally the trees 
are connected by having both sides put the edge in the forest 
as described above. The side with the higher identity (say j) 
remains a root, while the other, k ,  sets its Parent Variable to 
point at j. 

Links Weights; Finally, let us say a few words on the 
weights of the links. A field in the weight that is more sig- 
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nificant than the nodes names (according to a lexicographical 
order in which the link weights are compared) is the link’s 
speed (faster links are assigned lower weights) in order to 
prefer fast links in the tree construction. Consider a node u 
that is  an endpoint of a “heavy weight” link (u, v )  (e.g., a 
T1 1191 or slower link) that leams (from the topology update) 
about the existence of a lower weight link that should replace 
link (u, T J )  in the tree. (We expect that the tree links will 
usually be SONET OC3 [3] and above.) Node u removes link 
(u, w) from the tree. This is a topology change. Thus the tree 
root learns about it (from the topology update protocol) and 
moves to mend the tree. Note that the better link will be put 
in the tree this time. In order to prevent excessive changes to 
the tree node u removes link (u,  w) from the tree only if the 
difference between the weights of link (u,  v) and the new link 
is above some predefined value. 

Note that a link that goes up  and down frequently will 
usually not disrupt the operation of the tree maintenance 
algorithm unless it is a candidate for a tree link. This may 
happen if the unstable link has a very small weight and 
therefore each time it recovers it is the best tree candidate. 
Such a phenomena can make the protocol repeat the same step 
again and again ignoring the failure of other links. (This is a 
case of starvation.) This is an unlikely case, since the detection 
of a link failure is rather slow [18]. Still it  is prevented by 
including the reliability of the link as the most significant field 
in its weight. Each failure of a link increases its weight. Note 
that this weight may now not be consistent in the endpoints of 
the link as long as the link is disconnected. However, for our 
protocol only the weight of links that are up (not disconnected) 
matters. (When the link is brought up, its two endpoints, and 
hence their trees, agree on the weight. This i s  considered a 
topology change, and hence triggers a broadcast). 

B. Topology Update 

First let us assume that no messages are lost by the fast 
broadcast. 

Each node TJ has a single counter (initially zero) Seq-No 
(nodal sequence number). Whenever w notices a topological 
change in  one of v’s edges ( w ,  ,w) the value of Seq-No 
is incremented by 1. The topology update item generated 
includes the new description of the edge  (up,  down, tree.. .), 
and the new value of Seq-No. This item is broadcast over the 
tree that includes v .  

Recall (subsection A )  that when two trees merge their roots 
invoke the topology update protocol to exchange topology 
information. To reduce the traffic, they first exchange their 
Seq-No vectors. This vector contains the sequence number 
of the last topology (or utilization) update received from each 
node in the network including nodes which are not at that tree. 
Its value is updated with the reception of each update. Next, 
each side of the merged tree sends the other the utilization 
information the other missed. This is detected as follows. 
Assume one side has a value z as the last sequence number 
received from k and in the other side the value of the last 
sequence number received from k is y. Assume further that z 
is larger than TJ. The root of the first side will send to the root 

of the second side all the utilization updates generated from 
node k with sequence numbers greater than y (up to z). The 
root of the second side will then broadcasts this information 
on its side of the new tree. 

The hardware tree broadcast is much faster than the transfer 
of the rootship. Therefore, if a node receives a hardware 
broadcast and then is disconnected from a certain tree and 
later it  is reconnected, the broadcast is already terminated and 
the node will not get the same message again. The sequence 
numbers exchange at the time of tree merging also cost  at most 
one item exchange per each topology change. 

Let us now consider the case that messages may be lost (be- 
cause of congestion or link errors) during the hardware broad- 
cast. We employ a backup mechanism that is “piggybacked” 
on the transmission of utilization updates (Section V-B). These 
updates also carry topological information. However, in order 
to guarantee prompt delivery with high probability, we need 
that such messages will be triggered at some minimum rate. 
It is very unlikely that a node will not have new utilization 
information to send about its link for a long time. (See Section 
V-B.) However, if this does happen, the node will send an 
update if a certain time has elapsed since its previous update. 
This guarantees a minimum periodic transmission rate. 

So far we have ignored the possibility that a node fails 
and its Seq-No counter is erased. Since we use a nonvolatile 
memory for the sequence number counter this event is un- 
likely. However, in case it does happen, we have added a 
random number 64 bits field to the node’s name. When a 
node recovers from a failure it chooses the value of this 
field at random. This will differ from the previous name with 
an overwhelming probability. Thus the new topology updates 
sent by this node will not be discarded by other nodes, even 
though they have small sequence numbers. A name that is no 
longer used will disappear, due to a slow time driven backup 
update and garbage collection protocol. This backup is used 
anyhow to let a node “forget” about another node from which 
it becomes disconnected forever. Similarly, a node that has 
not heard a utilization update of some edge for a long time, 
assumes that this edge is disconnected. (This backup protocol 
will actually recover also from the extremely unlikely case 
that the chosen node name  is the same as the previous one.) 
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