
1950 IhEh TRAUSAC'I'IONS ON COMMUNICATIONS, VOL. 43, NO. 5 , MAY IYYS

A Distributed Control Architecture
of High-speed Networks

Israel Cidon, Senior Member, IEEE, Inder Gopal, Fellow, IEEE, Marc A. Kaplan, and Shay Kutten, Member, IEEE

Abstruct- A control architecture for a high-speed packet-
switched network is described. The architecture was designed
and implemented as part of the PARIS (subsequently plaNET and
BBNS) networking project at IBM. This high bandwidth network
for integrated communication (data, voice, video) is currently
operational as a laboratory prototype. It will also be deployed
within the AURORA Testbed that is part of the NSFlDARF'A
gigabit networking program.

The high bandwidth dictates the need for specialized hardware
to support faster packet handling for both point-to-point and
multicast connections. A faster and more efficient network control
is also required in order to support the increased number of
connections and their changing requirements with time. The
new network control architecture presented exploits specialized
hardware, thereby enabling tasks to be performed faster and
with less computation overhead. In particular, since control
information can be distributed quickly using hardware packet
handling mechanisms, decisions can be made based upon more
complete and accurate information. In some respects, this has
the effect of having the benefits of centralized control (e.g., easier
bandwidth resource allocation to connections), while retaining the
fault tolerance and scalability of a distributed architecture.

P
I. INTRODUCTION

ACKET SWITCHING networks have changed consider-
ably in recent years. One factor has been the dramatic

increase in the capacity of the communication links. The
advent of fiber optic media has pushed the transmission speed
of communication links to more than a gigabit per second,
representing an increase of several orders of magnitude over
typical links in most packet switching networks [19] that
are still in use today. Increases in link speeds have not
been matched by proportionate increases in the processing
speeds of communication nodes. This implies that switching
of information cannot be performed using traditional software
store-and-forward functions.

Another factor is the changed nature of traffic carried
by these networks. As opposed to pure data networks, or
pure voice networks, it is now accepted that packet-switching
networks (or variants of packet switching networks like ATM

E E E Communications Society. Manuscript received June 8, 1990; revised
Paper approved hy A. A. Lazar, the Editor for VoiceiData Networks of the

February 15, 1993. This paper was presented in part at the 9th Annual ACM
Symposium on Principles of Distributed Computing, P.Q., Canada, August
1990. The work of 1. Cidon was done while he was at IBM T. I. Watson
Research Center.

NY 10598 USA.
The authors are with IBM T. J. Watson Research Center, Yorktown Heights,

and with the Department of Electrical Engineering, Technion, Haifa 32000,
I. Cidon is with Sun Microsystems Labs, Mount View, CA 94043 USA,

Israel.
IEEE Log Number 9406234.

[6]) will form the basis for multimedia high-speed networks
that will carry voice, data, and video through a common
set of nodes and links. Real time traffic (e.g., voice and
video) requires that the route selection function be capable
of guaranteeing for a long period the availability of adequate
network resources along the chosen path for a particular traffic
stream. These streams typically require that a minimal amount
of bandwidth be available to them as long as the stream
is active. On the other hand, nonreal-time services (such as
traditional data services) are much less predictable and must
be supported on a demand basis. Such nonreal-time services
can be slowed down or be postponed for a later time when
the network is heavily loaded but require quick and prompt
setup if resources are available. The increased number and
the heterogeneous characteristics of users (or calls) makes
traditional network control schemes functionally inadequate
and inefficient.

Both of the preceding factors have a significant impact on
the design of the protocols and control procedures for the
network. The disparity between communication and processing
speeds suggests that processing may become the main bottle-
neck in future networks. A common partial solution to this
problem is to introduce high-speed switching hardware which
off-loads the routine packet handling and routing functions
from the processing elements 1121. This issue has been heavily
investigated in the literature and several high-speed hardware
switches have been described [22]. A second issue, the need
for enhancing the performance and the functionally of the
network control layer, is much less explored.

In this paper we explore this second issue, specifically
focusing on the lessons that we have learned during the design
and implementation of the PARIS network [8]. We believe that
most of our conclusions are general and can be applied to any
high-speed packet network.

The early stage of PARIS was described in [8]. A subsequent
paper [lo] describes a successor to PARIS called plaNET.
(For clarity, we only refer to PARIS though plaNET is largely
similar as far as distributed control is concerned.) Both works
also include some initial ideas regarding distributed control. In
the current paper we describe for the first time the distributed
control functions and the way they fit into the complete
network. We elaborate on the way in which network control
performance can be gained by exploiting specialized hardware
features. In particular, we introduce new multicast features
implemented in hardware and exploit them in performing
fast and computation efficient information distribution for
different network control tasks. We also describe some new

0090-6778/95$04.00 0 1995 IEEE

CDON el a[.: A DISTRIBUTED CONTROL ARCHITECTURE OF HIGH-SPEED NEIWORKS 1951

algorithmic ideas that save computation overheads associated
with previous network control solutions. Our performance
measures are stated in terms of worst case time and processing
costs associated with the distributed procedures used for
network control.

Let us now describe the problems solved by the distributed
control architecture presented in this paper. The control pro-
cedures of the PARIS network facilitate virtual circuit routing.
Thus we have the notion of a “connection” or “call” being
established between a source and a destination (a call can
carry either real-time or nonreal-time traffic). For each call,
all the traffic of that call (in one direction) traverses the same
path through the network. The control process is as follows.
Requests for “calls” arrive at nodes asynchronously. Each call
has associated with it some parameters such as average packet
rate, burstiness, tolerance for packet loss, etc. Calls are either
denied access to the network (“blocked”) or accepted into the
network. If accepted, a call is provided with a route that has
adequate capacity to handle the request. The mechanisms used
by each node to perform these functions (acceptldeny calls,
provide a route, and guarantee/reserve bandwidth) are referred
to as the control procedures of the network. In a similar way,
existing calls might request for additional network resources
along the established call path (or release some of the resources
not used any more).

Traditional data networks typically employ distributed con-
trol but do not guarantee availability of bandwidth to calls.
They are usually too slow to be extended to perform fast
setup and takedown of calls or bandwidth reservations. Their
distribution of routing information is usually computational
inefficient because of an extensive use of a software based
hop-by-hop information flood mechanism. Control procedures
in common carrier networks (circuit switched networks) deal
with capacity allocation but are typically more centralized, rely
on the availability of significant computing power and support
rigid types of reservations which do not change in time. A
key contribution of PARIS is showing that by employing
hardware speedups and new algorithmic techniques in the
control flow it is possible to provide performance guarantees
and considerable speedup of the reservation operation while
preserving the fault tolerance and growth capabilities of a dis-
tributed control architecture. In particular, we develop a new
topology and utilization information update algorithm which
employs a hardware based broadcast over a tree replacing the
traditional hop-by-hop software flooding employed in previous
architectures such as ARPANECT [ZO] and APPN [S 1. The
advantages of the new approach are much faster distribution of
the topologyhtilization information and a major reduction in
the processing involved. We develop fault-recovery and load
balancing mechanisms to insure its operation under topological
changes and rapid changes of network load. In addition, we
develop a new call setuphakedown procedure which employs
another hardware multicast mechanism and accelerates the
bandwidth reservatiodrelease process compared to previously
developed hop-by-hop software procedures such as the one
in APPN [5] . We also incorporate additional mechanisms to
efficiently handle large number of calls, failures over the call’s
path, and graceful recovery of nodes.

The work presented in this paper is more than a “paper
study.” Considerable prototype implementation has been done
and much more is planned. A prototype PARIS network,
operating at switching speeds of over 1 Gbls, has been built
and tested within a laboratory environment. More realistic
deployments are underway. For example, a PARIS network
is being installed in the AURORA testbed. Many of the
mechanisms described in this paper will be implemented and
experimentally validated as part of that project. The AURORA
project is part of the NSFDARPA gigabit networking pro-
gram, under the auspices of the Corporation for National
Research Initiatives. It will involve the construction of a
gigabiusecond network that will link together four research
centers in the Northeastern United States (MIT, University of
Pennsylvania, IBM, and Bellcore). Other field trials include
a trial with Rogers Cable Services in Toronto and a Trial
with Bell South Services in Tennessee. It is likely that the
results of this trials will provide considerable experience
and understanding of how distributed control algorithms will
operate in future networks.

The overall PARIS architecture is described in [8] and
its followup plaNJ2T is described in [lo]. Briefly, PARIS is
a high-speed packet-switching system for integrated voice,
video, and data communications. The system uses simplified
network protocols in order to achieve the low packet delay and
high nodal throughput necessary for the transport of real time
traffic. The packet handling functions are implemented mainly
in dedicated high-speed hardware, with only some low-speed
control functions requiring software implementation. PARIS
uses variable sized packets with automatic network routing.
Automatic network routing (ANR) is a form of source routing
where each packet contains an ANR header composed of a
concatenation of link identifiers. It also supports (in hardware)
a rich set of alternative routing schemes which include tree
multicast, label swapping (including ATM VCNP formats),
copy mechanisms, and more. We later elaborate on the specific
routing schemes which are exploited by the network control
procedures. Details on all the routing schemes including the
ones which are not described in this paper can be found in [lo].

Note that the paper deals with distributed control algorithms.
Therefore, we mainly present performance results from a
worst case complexity perspective, typical in the algorithmic
literature. Average case results are very difficult to obtain
analytically and are very rare and limited in the algorithmic
literature. Past and current lab prototypes as well as simulation
studies are very limited (3 4 nodes) for a performance study of
the network control software and are used mainly for validity
and correctness test. Therefore, we believe that comprehensive
performance results will only come when the network is
actually used in a production environment.

The rest of the paper is organized as the following. In
Section I1 we describe the model of the communication
subsystem assumed for the operation of the network control
algorithms. In particular, we discuss the hardware supported
functions that can be exploited for faster control. In Section I11
we describe the overall structure of the network control archi-
tecture. We explain the notion of the “bandwidth reservation
cycle.” In this section we list and motivate the distributed algo-

1952 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 33, NO. 5, MAY I995

I I
COMMUNICATION LINK!,

Fig. 1 . Node structure.

w
Fig. 2. Automatic network routing.

Lt’ Li’
rithms that are used for the network control. Next we address
the different components of’ the network control. Section IV
briefly summarizes the route computation procedure assuming
a correct topology database is available. Section V describes
the distributed procedures used to assemble and update the
topology database at every node. (Details of the algorithms
are described in the Appendix.) We also address new aspects
such as the load balancing of update messages. Section VI
addresses call setup, maintenance, and takedown. We dcscribe
the distributed algorithm used and the method of traclung,
updating, and recovering local load parameters. We summarize
the paper in a short conclusion section.

11. NETWORK MODEL
Each PARIS node consists of two components, a fast

hardware switching component (the switching subsystem (S S))
and a slower controller (network control unit (NCU)) (see
Fig. 1). The switching subsystem performs the packet routing
functions while the NCU performs the more complex control
functions. Bidirectional transmission links are attached directly
to the switching subsystem. The NCU is also attached to
the switching subsystem by a bidirectional link. We assume
that each link has a finite, nonempty, set of identities (ID’s).
The hardware permits each link’s ID set to be configured
dynamically under software control. In this paper we assume
that the various ID sets are defined in order to perform the
following functions.’

1) Automatic Network Routing (ANR; see Fig. 2): This
requires every link to own an ID that is unique within its
switching subsystem. If a certain node (where no ambiguity
exists, we say “node” instead of “the NCU in a node”) wishes
to send a packet to a certain destination node and if it has
knowledge of a path to that destination node, it can send the

’ The following intermediate muting functions are only a subset (used by
the control algorithms of this paper) of the set of routing functions (or modes)
implemented hy plaNET. The interested reader is referred to [101 for more
details.

3 i o ’
5. -

Fig. 3. Selective copy.

Fig. 3. Multicast.

message by prefixing the data with a string that is composed of
the concatenation of all the link ID’s along the computed path.
Used ID’s are stripped off before the packet is forwarded.

2) Selective copy (see Fig. 3): Assume that for each link
attachment (excepting the NCU’s attachment) we define a
“copy ID’ that is identical to the (primary) link ID except for
its most significant bit (MSB). For each link, both the copy
and the primary link ID’s are configured as members of the
ID set. By also assigning all of the copy ID’S to the ID set
of the NCU’s attachment, it is possible to achieve a selective
copy function. A packet may be copied by several preselected
nodes along a path by substituting the copy ID for the normal
ID for these preselected nodes, e.g., if MSB = 1 a copy will
be received by the NCU of that particular node; if MSB = 0
no copy will be delivered. In Fig. 3, MSB = 1 is marked by
an underscore of the respected link ID.

3) Multicast (see Fig. 4): If more than one link recognizes
the same ID (marked as “T” in Fig. 4), it is possible to perform
a multicast within the node. This feature is exploited in the tree
broadcast procedure used for topologylutilization update (see
Section V.A for more details). We denote this scheme also
as tree multicast as it is correctly operated if a tree of links
is labeled with no loops. We replace the term multicast by
broadcast in case the multicast covers the complete network.

Note that these routing mechanisms are currently parts of
the PARIS/plaNET architecture. However, other architectures
such as ATM or frame relay can implement them (possibly in
hardware) just above the cell or the frame layer.

As previously mentioned, the basic unit of traffic is a
“call” or a “connection.” From the viewpoint of the control
procedures, a call is defined to be a stream of packets from
some external source with a specified average rate, variance,
service requirement, etc. The duration of a call can be either
long (more than minutes for a phone call or video connection)
or short (for the duration of a fast file transfer). We enforce that
each source restricts itself to the specified parameters through
an input rate regulation scheme [SI. The “leaky bucket”
scheme proposed in [22] and the credit manager scheme used

CIWN ef al.: A DISTRIBUTED CONTROL ARCHITECTURE OF HIGH-SPEED NETWORKS 1953

in SMDS A [21] are examples of input rate regulation schemes.
The PARIS rate-control mechanism is a buffered version of
previously suggested leaky bucket scheme with additional
components (e.g., a spacer) as is described and analyzed in
(41, [21], and [15]. In general, the scheme guarantees that the
long term average rate does not exceed the prespecified rate
of the connection. Over shorter periods, it permits bursts at a
much higher rate which is constrained by the maximum speed
of the communication links in the path.

111. CONTROL CYCLE

The PARIS approach to connection control is a decentralized
one. This design choice is motivated by the fact that PARIS is
aimed at private networks rather than public carrier networks.
For fault tolerance and performance reasons, it is well accepted
that for such networks decentralized control is preferable to
reliance upon one or more central controller(s) [5] . Thus,
in the PARIS system, every backbone node participates in a
set of distributed algorithms which collectively comprise the
connection control of the system.

While distributed control mechanisms are commonly used
in most of today’s data networks [5] , [20], they do not deal
with traffic that requires service guarantees. In particular,
they use hop-by-hop software based “flooding” algorithm to
distribute the local states and loads. While this is acceptable
in the environment of relatively slow data networks, in the
environment of high-speed networks (high rate of new calls
and rapid change of network load) such schemes will result
in excessive overhead and high information latency. Similarly,
they use hop-by-hop call setup and takedown procedures with
similar consequences.

As mentioned in Section 11, an input rate regulation is used
to regulate the traffic rate and it is assumed that all traffic
that passes through the throttle is guaranteed a certain level of
service. Thus, before admitting a call into the network, some
guarantee must be provided that the communication capacity
required by the call is available. If not, the call must be denied
access into the network or “blocked.”

In PARIS, we use a distributed route selection mechanism
based on a replicated routing topology database similar to
the one in ARPANET [20] and APPN [5]. Basically, each
node maintains a complete routing topology database with link
weights reflecting the traffic over each link (utilization). When
link weights change substantially updates flow to every node
using a broadcast algorithm?

At the call setup time, the source node obtains the param-
eters associated with the new call. These parameters define
the type of call, the destination, and the parameters of the

bitlsecond switches) are presented in the routing topology database. Further-
*Note that in PARIS, only network nodes (which are the set of giga-

more, only network nodes are required to participate in the maintenance of
the routing topology database. Therefore in the PARIS environment (a private
network) the routing topology ddtdbase is typically limited to less than a
hundred nodes. Similarly, the topology database consists of the collection
of hackhone links (gigabitlsecond links) whose number is also not too
large. However, similarly to the ARPANET case and using the algorithmic
improvements we describe later on, we don’t view the size of the database or
the amount and rate of database updates to be a practical limiting factor in a
public high-speed work.

input throttle that is associated with this connection (speci-
fying either directly or indirectly the average capacity of the
connection and the level of burstiness). Typically, these traffic
parameters are based on traffic type (e.g., a voice call requires
a steady 64 kb/s) and may be changed dynamically during the
operation of the connection. The source node then computes
a path based on its local topology database and generates the
ANR field from source to destination and back. The source
node uses the information in the local topology database to
ensure that the chosen route is capable of carrying the traffic
and providing the level of service required by the traffic type.
The computed information is then sent to the adaptor that
actually interfaces with the source of traffic. The call setup
procedure is then initiated. As part of the procedure, an end-
to-end call setup packet flows over the path and is copied by
the intermediate nodes along the path. Based on the bandwidth
information in the call setup packet, each of these nodes
updates its database of the bandwidth utilization on its link
attachments. This updated information may change the link
weights and trigger an update broadcast.

If no suitable path can be found between source and
destination, the call will be blocked. The scheme provides
control of the path at the source and obtains relatively efficient
paths. However, because the information about remote link
utilization takes a nonzero time to propagate through the
network, there is a possibility of some unnecessary blocking
caused by temporarily inaccurate information in the routing
topology database. To minimize this inaccuracy, in PARIS,
we employ an efficient way for performing the topology
and utilization update both in term of speed and processing
overhead. A fast tree broadcast function is employed which
permits a direct broadcast of information to all network
nodes with no software involvement at the intermediate nodes.
Using the speed of the network hardware, this fast broadcast
reduces the problem of transient inconsistencies in the routing
topology databases. This new feature also reduces the message
processing overhead by restricting the broadcast to deliver only
a single copy of the information to every node. Therefore,
a considerable amount of overhead is saved compared to
traditional “flooding” mechanisms which may deliver multiple
messages to each node and require software processing to
ensure that duplicates are not forwarded [5] , [20]. (See Section
V.)

The process of connection control can be captured in the
form of a “control cycle” shown in Fig. 5. The cycle represents
the flow of information in the system. The cycle starts with
a request for a new connection. This request contains the
call parameters. The information used to compute a route
for the call comes from the local topology database which
also contains link weights including link utilizations. This
information is obtained through the topology and utilization
broadcasthpdate algorithm. The trigger for the utilization
update comes from the local link weight computation of each
node. These weights are computed from the knowledge of the
call parameters for each of the calls that traverse the links,
knowledge that is gained during the call setup process. The
initial source of the parameters is the connection request. This
closes the cycle.

1954 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 43, NO. 5 , MAY 1995

multiple (“stretch factor”) of the minimum possible path length
the call is admitted into the network. (The “stretch factor”
is determined by the current load conditions and input call
parameters). Otherwise, the call is blocked. (This may require
some calls to be blocked even though resources are available,
in anticipation of future calls which are expected to make
better use of the resources.) Further investigation of this idea
is being conducted [I].

Local link wmight
computotion

ode update V. INFORMATION UPDATE

Fig. 5. Control cycle.
A. Overview

Note that two components of the cycle involve interactions
among several nodes. These are the call setup process and the
topologyhtilization update. We use the fast copy and the fast
broadcast capabilities of the switching subsystem hardware to
speed up the operation of these two critical components of the
control cycle. We also employ novel algorithmic ideas in order
to reduce to processing load required for these two tasks. In the
rest of this paper, we discuss briefly the various components
of the cycle. Note that as the task of utilization update is a
subset of the the topology update task we focus in the rest of
the paper mainly on the latter.

IV. ROUTE COMPUTATION

Recall that since the full topology and link utilizations are
known at each network (NCU) node, this is essentially a local
operation. This procedure also determines whether or not a
given call is permitted access to the network. While the scheme
is basically a collection of heuristics, the underlying “optimal-
ity” criterion or long-term objective is to maximize network
throughput subject to the maximum loss probability allowed by
each packet. (Packet loss increases with throughput.) Unlike
the case in traditional networks, minimizing delay is not an
objective, since in a fast network a packet sent and not lost will
anive within the delay conditions of even very time sensitive
applications.

We use several “rules of thumb” to guide us in the develop-
ment of the route computation scheme. For example, the route
computation method should attempt to find a path with the
minimum number of hops as this minimizes the overall use of
network capacity. Thus, calls with excessive capacity demands
should be denied access to the network. We define “excessive”
by comparing the number of hops in the current route with the
“minimum hop” route. This Criterion is particularly important
under high load conditions and for calls with large holding
times.

The resulting scheme is sketched as follows. Based on the
characteristics of the call the first step is to identify the set
of links that can accommodate the call. (It is assumed that a
computational procedure is known whereby given the charac-
teristics of the call, and link weights in the topology database,
it is possible to compute the expected packet loss-the primary
parameter in determining acceptability of a link.) Among
the subset of acceptable links, a minimum hop path is thcn
chosen. If the length of the chosen path is within a permitted

Each local node is responsible for determining the band-
width utilization of its adjacent links, for determining when
to inform remote nodes of changes in utilization, and for
distributing this information to remote nodes. Distributing this
information is called a utilization broadcasthpdate. A similar
task is the topology update where the information about the
active and inactive state of the links is distributed. In fact, the
state of the link in the routing topology database and in the
topologyhtilization update messages includes several fields in
addition to link activity state and link utilization. These fields
include indication whether the link is a part of the hardware
multicast tree and additional link weight characteristics to he
later discussed.

For both updates it is possible to use a conventional flood-
ing based mechanism as in ARPANET [20]. However, the
ARPANET algorithm has some deficiencies that make it sub-
optimal for this purpose. First, it delivers a copy of every
message over every link (which can be translated to O(lE1)
overhead per topology item change, where E is the set of
links). This means that each node has to process a large amount
of redundant packets. (It is enough that each node receives
only one copy of each message.) This considerably limits the
effective size of the distributed database and the rate at which
database changes can be processed. Second, this algorithm
is hard to implement in fast hardware. (Remembering which
message has been received before is a task that hardware
switches currently cannot perform fast and cheaply. Thus the
relatively slow NCU in each node must decide whether to
forward a received message, or to discard it as a copy.) Thc
propagation of the update messages hop-by-hop through the
software layers makes the algorithm too slow to operate in a
rapidly changing traffic environments (this can be translated
to O(lVl) delay where V is the set of nodes).

The selective copy mechanism can be used to perform a
multicast or broadcast (e.g., through a path that traverses a
depth first search. See, e.g., 1141.) This, however, has draw-
backs in that it results in very long paths (and consequently
long message headers) and it requires that the sender must
know a route that reaches all the recipients of the message.
When topology information itself is delivered by this process
such a route may not be available. Variations of this approach
are discussed in [I21 and found to be inefficient.

The method used in PARIS employs a hardware multicast
mechanism which dclivcrs messages directly from the source
to all potential recipients with no software involvement in

CIDON et RI. A DISTRIBUTED CONTROL ARCHITECTURE OF HIGH-SPEED NETWORKS 1955

the transfer. Moreover, only a single copy of each message
is delivered to the endpoints. Hence, the processing cost is
only O(lV1) and the delay is only a function of the hardware
switching and the propagation delays in the network.

The multicast message mode was introduced mainly for this
purpose. Recall from Section I1 that a link may have multiple
ID’s (labels) and that these ID’s can be changed dynamically
by the local NCU. Suppose that some link adaptors, in various
nodes, have (among other labels) the label T. Assume further
that the collection of the T labeled links forms a tree. This
tree is used for a fast hardware broadcast as follows. When a
node wishes to perform a broadcast, it generates a multicast
type message, using label T. When this message arrives to
the switching subsystem, it is forwarded over all links labeled
T of that switch except the link over which it was received.
Note that this broadcast will reach every node on the tree, and
will terminate.

Topology updates are triggered whenever a node senses the
failure or recovery of an adjacent link. Utilization updates are
triggered whenever the node senses that the utilization of an
adjacent link has changed substantially [11 from the time of the
previous update. Utilization updates are also sent periodically
(as described below) to guarantee reliability.

The multicast type messages as defined above have no built-
in error recovery mechanism. There is some finite (very small)
probability that a multicast message sent on the tree will
not arrive at some of its destinations. In both the topology
and the utilization update tasks we make use of a “backup”
periodic broadcast of utilization updates to achieve reliability.
The periodic approach is suitable for such tasks because it is
important to receive only the most recent link information (pre-
vious updates becomes obsolete once a new one is received).
(Note that a link utilization message is also implicitly a link
topology message; a link that is utilized must be active). The
periodic broadcast is achieved by having each node maintain
a timeout period and performing a “periodic” broadcast if no
event driven utilization broadcast has occurred within this time
period. Note that we expect utilization updates to be very
frequent and do not expect this periodic mechanism to be
triggered very often.

As we would like to use a hardware tree broadcast for the
topology update protocol, we need a mechanism to enable the
nodes to label their adjacent links as tree links or nontree
links correctly and consistently. Since every node maintains a
local network topology database, it seems that it could have
computed a tree according to some procedure that is consistent
among all nodes (e.g., a minimum spanning tree) and thereby
know how to label its adjacent links (either a tree link or
a nontree link). This simple approach does not work in a
dynamically changing network as it may result in transient
loop5 in the tree labeled links. This will cause looping of
messages through the hardware and excessive traffic in the
network. Thus, we introduce a tree maintenance procedure
that uses network topology but imposes careful coordination
between the nodes in order to ensure that transient loops do
not occur.

Thus our complete information update protocol is composed
of two modules. The first module, topology update protocol

Fig. 6. Relations of topology update and tree maintenance routines.

(together with the utilization update) broadcasts over the tree
computed by the second module, the tree maintenance proto-
col. On the other hand, the tree maintenance module uses the
topology knowledge in order to maintain the tree (see Fig. 6) .
That is, when the tree is disconnected the replicated topology
database is used to locate the edges that will reconnect the tree.
The topology update and the tree maintenance algorithms are
described in Appendix A.

Let us comment that a somewhat similar tree maintenance
protocol appears in [2]. However this protocol cannot make
use of a hardware broadcast, since it assumes reliable delivery
of messages (that our basic broadcast does not provide). Also,
the protocol of 121 is more complex than required since it
does not permit the use of sequence numbers (used here).
While sequence numbers may lead to theoretically unbounded
message length, for practical purposes, 64 bits of sequence
numbering is more than enough. The use of sequence numbers
simplifies the tree maintenance and topology/utilization update
protocols and the data structure of the topology database.

The topology knowledge also enables us to adjust the tree
easily to be a minimum spanning tree (rather than any spanning
tree). It also helps us to achieve a stabilization of the tree even
in the presence of some less reliable links (their weights will
be increased to reflect their instability).

B. Load Balancing
In a high-speed environment where links are very reliable

and of very high bandwidth, we expect utilization information
to change at a rate which is several orders of magnitude faster
than the link topology information (seconds versus hours or
days). Therefore, the utilization update messages dominate the
total update traffic and are the main concern of this section.

A key issue to ensure avoidance of congestion in the process
of utilization update is that of load-balancing. If every node
is permitted to send utilization updates at any time we may
run into potential problems. It is possible that even if the
processing rate at a node is on average adequate to cope with
the total rate of updates, there might be periods in which
the number of concurrent updates exceeds the processing
speed causing the update message queue to become congested.
Adding to this problem is the fact that utilization updates at
different nodes might be correlated. The reason for that is the
introduction (setup) of high-bandwidth calls through a long
path of nodes. Since the call setup is almost instantaneous at
all these intermediate nodes they may issue a utilization update
at almost the same time. Another scenario is a failure of a high
bandwidth link which causes rerouting of a large number of

1956

calls all within a short period. This means that even though
our broadcast media is not a collision type we would prefer to
spread updates over time in order to guarantee load-balancing.

We employ a scheduling mechanism (BRAM) that is usually
used for scheduling transmissions in a shared media network
(radio or coax) in order to avoid collisions see [7] . In such a
scheme the scheduling is done by ordering the transmission
of nodes in a round robin fashion. Nodes that haw nothing
to transmit are skipped dynamically by detecting the absence
of their transmission.

The implementation of the BRAM algorithm in the PARIS
network is straightforward. The ordering of the transmission
can be done locally by each node using its replica of the
topology database and the topology of the broadcast tree. The
node can also estimate the propagation delay through each link
and in particular the tree links. Inconsistencies between the
replicated topology databases can be ignored since the network
can tolerate “collisions.” The BRAM algorithm works better if
the sum of the propagation delays between consecutive nodes
of the round-robin schedule is minimized. If the broadcast is
performed on a general network this would pose a difficult
graph problem. (It is NP Complete [17].) However, since the
broadcast is accomplished over the hardware based tree this
problem is solved using a simple depth-first-search procedure.
Since our broadcast mechanism is collision free and the delays
are only estimated, the BRAM algorithm is only approximated.

VI. CALL SETUP, MAINTENANCE, AND TAKEDOWN
Traditionally, in virtual circuit based networks, (Le,, TYM-

NET, X.25 etc.) call setup and termination procedures are
used for two different tasks. First, the intermediate nodes must
update their label swapping tables in order to activate the
intermediate switching operation for a specific call. Second,
the two end-points must cstablish an end-to-end connection
and exchange session parameters (i.c., window size, packet
size etc.).

In the PARIS system, since we use ANR routing. there is no
need for any table update to allow the physical communication.
The endpoints are able to communicate once the routes have
been computed. However, for bandwidth management reasons
we use the call setup/takedown procedure as the mechanism to
inform the intermediate nodes about the amount of bandwidth
that is allocated to the new call. (Recall (Section V) that
the nodes track the amount of reserved capacity for each of
their local links and broadcast a utilization update if some
significant change has been identified.)

Another task of the setup procedure is to reconfirm the
availability of the reserved bandwidth for the new call. This
task is necessary sometimes because of the potcntial latency
in the operation of the bandwidth control cycle. Calls which
are concurrently routed from different sources may allocate
capacity from some link without being aware of each other.
Typically, this will cause no harm if the call bandwidths are
small compared with the residual available capacity. However,
for congested links or high bandwidth calls (such as high
quality video calls) this might cause an overutilization and

IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. 43. NO. 5 . MAY 1995

We introduce the concept of a call maintenance procedure

1) to track in real time the bandwidth being reserved and
released in order to pass significant load changes to the
topologyhtilization update mechanism;

2) to notify the endpoints of a call about failures along the
call’s path that require a call drop or a switchover to an
alternate path;

3) to release the reserved capacity of explicitly terminated
calls (with explicit take-down messages);

4) to release eventually the reserved capacity of implicitly
terminated calls. The absence of an explicit take-down
message can be caused by

in order to satisfy the following requirements:

a) failure of the endpoints before the normal termi-
nation of the call;

b) LinWnode failures that isolate the intermediate
nodc from the endpoints of the call.

In addition to the above we use the call maintenance proce-
dure to enhance the fault-tolerant operation of the network.
Since the switching subsystem is a stand alone hardware
module, independent of the NCU, the failure of the NCU
does not necessarily impact the flow of steady-state traffic of
existing calls. (This failure, however, will prevent the setup of
new calls through this node). Thus. a recovering NCU (or a
backup NCU) may not “know” the reserved bandwidth and the
actual capacity used in its links. We introduce a mechanism
by which such a processor can first regain the reservation
information and then rejoin the call setup process.

A. Setupflakedown

The call setup procedure is composed of two complementary
phases. They are described in detail in [13]. In the first
phase the source of the call notifies the destination and the
intermediate nodes along the path of the new call and its
characteristics. This phase is accomplished by the source
sending a direct message to the destination which is also
copied by the intermediate nodes (using the selective copy
mechanism).

The second phase includes a call confirmation process
in which a confirmation message is transferred through the
intermediate nodes back to the source. Each node checks
whether the reserved capacity is indeed available. Otherwise it
will convert the confirmation message into an abort message.
The confirmation phase is optional in the sense that in most
cases the source does not wait for the confirmation message
before end-to-end communication is enabled. However, the
reception of an abort message will cause the session to
be aborted immediately. (The confirmation process can be
accelerated by having the nodes on the way send confirmations
in parallel using ANR; alternatively, some nodes along the way
may accumulate some downstream confirmations, and send a
single consolidated confirmation 1131.)

The same procedure of call setup is also used for changing
the required bandwidth during the connection active period. It

hence excessive packet loss. can also be used to poll the nodes over the path regarding the

C l W N et oL: A DISTRIBUTED CONTROL ARCHITECTURE OF HIGH-SPEED NETWORKS 1957

amount of bandwidth available over the path. Such use of the
same setup mechanism is described in [lo].

The call takedown is very similar to the call setup without
the confirmation phase. The reserved capacity is released.
Since the call might be terminated by external events such as
failures along the path we must have other ways to takedown
the call and to release the reserved capacity in such events.
These mechanisms are discussed in the following.

B. Call Maintenance

In the call maintenance procedure each source send peri-
odically refresh messages which include the call parameters.
These messages are acknowledged immediately by similar
messages from the destination. These acknowledgment mes-
sages are also copied by intermediate nodes. The basic as-
sumption of this scheme is that in the absence of failures,
the packet loss probability for control messages is very small
and thus the probability that some fixed small number of such
consecutive messages (K in the range of 2-5) will be lost is
practically negligible [l I].

The periodic message exchange is used in several ways.
First, it serves as a path integrity check for the endpoints of
the session. The absence of a refresh message indicates to the
endpoints a failure along the path or the failure of the other
endpoint. Second, these messages allow the intermediate nodes
to track the existence of calls and the amount of bandwidth
reserved for these calls. (This will be further explained later
on). This requires the copy of the refresh messages by the
NCU. The time requirements for this second task are less strict
than for the first one. Therefore, only a certain subset of the
refresh messages should be marked as messages to be copied.
Third, this periodic transmission of the call parameters allows
nodes to refresh their reservation knowledge or automatically
recover it after a NCU crash just by processing the copied
refresh messages for some period of time.

Tracking Bandwidth Reservation: There are two basic ap-
proaches to the reservation refresh procedure: 1) explicit;
and 2) implicit. In the explicit refresh the NCU maintains a
call table in which each call ID has an explicit entry that
describes the amount of capacity reserved. A timeout period
is maintained for each entry. After the reception of a refresh
message for a specific call ID the timer for that entry is
reset. If after some predetermined number of refresh periods
(considerably larger than the above K) no refresh is received,
the call is considered terminated and its entry is removed from
the table. We assume that a similar but shorter timeout period
is used by the end-points so they will drop the call before
the intermediate nodes. This ensures that actual transmission
ceases before the call capacity is released.

The drawback of the explicit refresh is that a large amount
of memory and processing is required. A typical high-speed
link (say SONET STS48 which is approximately 2.4 Gbk)
may carry over 40000 64kb/s phone calls. The duration of a
voice call is usually around 200 s which leads to a refresh
time for the reserved capacity of about 1-10 s. Thk results in
400040000 such operations (which include finding the entry
in the table, resetting the timeout flag, and other overheads)
per second per link and a table size of 40 OOO entries per link.

Fig. 7. Explicit and implicit update.

Thus, we would like to avoid the use of explicit refresh for
calls that use only a small fraction of the link capacity. For this
majority of calls we employ an alternative implicit approach
which is less exact but also less computationally expensive.
The idea is that over some sufficiently large ‘’window” of time
(which will depend on the maximal difference in the delay
between consecutive packets) the number of refresh packets
that will be received is fairly constant. (In our example the
window can be set to I O refresh periods; using the law of
large numbers, for 40 000 calls the number of refresh messages
received in a window will be very close to 10 x 40000 with
very high probability). Here, we do not have to maintain an
individual table entry per call but simply need to keep the sums
of the reserved capacity for the last window. A weighted sum
of these short term estimations serves as the node estimate for
the link utilization.

A potential problem exists since some calls may be of a very
high capacity and therefore the total implicit sum will depend
much more on their refresh messages than on the messages of
the other calls. This causes the law of large numbers not to hold
for the sum (it will still hold for the total number of refresh
messages). In PARIS, we make such calls use the explicit
refresh procedure and these refresh messages are not taken into
account for the implicit summation. A typical rule is that if a
call requires more than a% of the total link capacity (say l%),
then this call will be explicitly maintained in the reservation
table and will not be part of the implicit summation. Thus, we
have a strict upper bound on the number of calls we maintain
explicitly (say 100). The resulting hybrid scheme is illustrated
in Fig. 7. A different approach would be to break the large ca-
pacity calls into smaller pieces and instead of sending a single
message per refresh period to send a multiplicity of refresh
messages each carrying a fraction of the total call capacity.

A further way of reducing the computational burden of the
NCU is to introduce additional hardware associated with each
link. Since the processing is trivial, the refresh messages can
be processed on-the-fly by some special purpose module which
will be part of the link adaptor hardware. Only sums will be
reported to the NCU.

VII. CONCLUSION
We have described the basic components of the control layer

of the PARIS Gb/s experimental network. The main conclu-

1958 IEEE TRANSACTIONS ON CWMMUNICAIIONS, VOL. 43, NO. 5, MAY 1995

sion is that in the new environment of high-speed integrated
network fast links and switches are not enough to provide
a satisfactory solution for the heterogeneous traffic demands.
New methods and mechanisms should be developed to cope
with the increased demand for fast call setup, reservation, and
changes of call parameters. The PARIS solution consists of
a set of distributed procedures which exploits the hardware
routing mechanisms and algorithmic methods which accelerate
the call control process and avoid excessive processing as
much as possible. In particular, we have described efficient
methods for updating distributed topology and utilization
databases and for setup and maintenance of calls by the
intermediate nodes.

Such schemes can also be employed by other high-speed
networks such as ATh4-based systems.

ACKNOWLEDGMENT
The authors would like to thank B. Awerbuch for helpful

discussions.

APPENDIX
TOFQLOGY UPDATE ALGORITHM

In subsection A we describe the tree maintenance module
assuming that the topology maintenance module ensures that
nodes on a tree know eventually the topology of their tree,
and neighboring edges. In subsection B we explain how this
assumption is realized.

We use the graph representation of the network and refer to
the actions of the NCU as being actions of nodes.

A. Tree Maintenance
For any link (v, u) the only node that can put it into the tree

is its endpoint node v. (Node u does similarly for edge (u , u),
so each edge has two entries in the tree description.) This is
done by 1) updating the local topology map to show that this
is a tree link; 2) putting the tree’s label on the adaptor, in the
switch (S S) , so that the switch will know to forward update
messages over it; and 3) notifying the other nodes so that they
too can update the status of the link (to be “tree”) in their local
topology map. Tasks 2) and 3) are performed by generating
a topology change (i.e., the edge changes from nontree status
to tree status) which will be handled by the topology update
protocol. A node w that gets a notification from the topology
update protocol about an edge (u, u) becoming a tree edge
updates its topology map. Similarly a topology update may be
either the failure or the recovery of a link, or the fact that it
has stopped being a tree link.

Note that when the tree is temporarily disconnected (e.g.,
due to a failure) it is actually a forest of node-disjoint trees,
rather than a single tree. The protocol strives to make this
forest into one tree that spans the whole (connected component
of the) network.

The algorithm maintains each tree a rooted directed tree.
Each node remembers which of its tree edges leads to its Parent
(the parent is the neighbor node in the direction toward the
root). The protocol keeps the values of these Parent variables

(in different nodes) consistent in the sense that if node 71 is
the Parent of node ‘u, then 71. is not the Parent of v . (The one
exception is the time that a message from u is on its way to
v to transfer the parenthood from u to v.) Each tree has a
single node with no Parent. This node (whose Parent = nil)
is the tree root. It coordinates the effort of the tree to merge
with another tree. This merging is repeated whenever possible.
Thus, if the network is stable for a reasonable amount of time
all the trees in a connected component of it merge into one
tree. (It has been estimated that in very large SNA networks,
of few thousands nodes, a topological change will take place
about every 1 hour.)

Using the forest description in its own database, a root r
knows which nodes belong to its own tree. Using the topology
database map root T can also find whether there is an edge
connecting a node in its own tree to a node which is not
a member of the same tree. Furthermore, we assume that
each edge has a unique weight, known to both its endpoints.
This can be achieved by using concatenation of the names of
its endpoint nodes as the least significant part of the edge’s
name (a tie breaker in case that all other field are equal).
The description of the more significant parts of the weight is
deferred to Section A.l.l.

Let (k , j) be the edge with the lowest weight among those
edges connecting root r’s tree to a node not in this tree. (Call
it the minimum outgoing edge.) If k # c, then the “rootship”
(the state of being the root) is transferred to k hop-by-hop
by sending root-change messages and changing the values of
the Parent variables (the edge which leads to the root) in the
nodes on the way from T to k . Note that during this transfer the
minimum outgoing edge may change (by the failure of edge
(k ! j) , or by the recovery of another edge). This is detected
by the current root that transfers the rootship to the endpoint
node of the new minimum edge.

When the root is the endpoint of the minimum outgoing
edge (according to its local database), it negotiates merging
with the tree on the other endpoint of the edge. For the merging
it is required (similar to [16]) that both endpoints will be the
roots of their trees, and that both will agree on the merging.
(This is introduced in order to prevent entering cycles into the
tree.) The root with the lower identity suggests the merging,
and waits until the other endpoint agrees.

Similar to [2] this suggestion is canceled in the case that the
edge fails. It may also be canceled when a lower weight edge
recovers. In this case the suggesting root must first ask the
other root whether the suggestion has already been accepted.
If the other root has already agreed to the suggestion, then it is
not canceled. Otherwise the suggestion is withdrawn, and the
suggesting root is free to suggest a merge over another edge.

When both sides agree to the merge the topology update pro-
tocol is invoked (to exchange topology information between
the nodes, and to notify about the new edge). Finally the trees
are connected by having both sides put the edge in the forest
as described above. The side with the higher identity (say j)
remains a root, while the other, k , sets its Parent Variable to
point at j.

Links Weights; Finally, let us say a few words on the
weights of the links. A field in the weight that is more sig-

C l W N et al.: A DISTRIBUTED CONTROL ARCHITECTURE OF HIGH-SPEED NETWORKS 1959

nificant than the nodes names (according to a lexicographical
order in which the link weights are compared) is the link’s
speed (faster links are assigned lower weights) in order to
prefer fast links in the tree construction. Consider a node u
that is an endpoint of a “heavy weight” link (u, v) (e.g., a
T1 1191 or slower link) that leams (from the topology update)
about the existence of a lower weight link that should replace
link (u, T J) in the tree. (We expect that the tree links will
usually be SONET OC3 [3] and above.) Node u removes link
(u, w) from the tree. This is a topology change. Thus the tree
root learns about it (from the topology update protocol) and
moves to mend the tree. Note that the better link will be put
in the tree this time. In order to prevent excessive changes to
the tree node u removes link (u, w) from the tree only if the
difference between the weights of link (u, v) and the new link
is above some predefined value.

Note that a link that goes up and down frequently will
usually not disrupt the operation of the tree maintenance
algorithm unless it is a candidate for a tree link. This may
happen if the unstable link has a very small weight and
therefore each time it recovers it is the best tree candidate.
Such a phenomena can make the protocol repeat the same step
again and again ignoring the failure of other links. (This is a
case of starvation.) This is an unlikely case, since the detection
of a link failure is rather slow [18]. Still it is prevented by
including the reliability of the link as the most significant field
in its weight. Each failure of a link increases its weight. Note
that this weight may now not be consistent in the endpoints of
the link as long as the link is disconnected. However, for our
protocol only the weight of links that are up (not disconnected)
matters. (When the link is brought up, its two endpoints, and
hence their trees, agree on the weight. This i s considered a
topology change, and hence triggers a broadcast).

B. Topology Update

First let us assume that no messages are lost by the fast
broadcast.

Each node TJ has a single counter (initially zero) Seq-No
(nodal sequence number). Whenever w notices a topological
change in one of v’s edges (w , ,w) the value of Seq-No
is incremented by 1. The topology update item generated
includes the new description of the edge (up, down, tree.. .),
and the new value of Seq-No. This item is broadcast over the
tree that includes v .

Recall (subsection A) that when two trees merge their roots
invoke the topology update protocol to exchange topology
information. To reduce the traffic, they first exchange their
Seq-No vectors. This vector contains the sequence number
of the last topology (or utilization) update received from each
node in the network including nodes which are not at that tree.
Its value is updated with the reception of each update. Next,
each side of the merged tree sends the other the utilization
information the other missed. This is detected as follows.
Assume one side has a value z as the last sequence number
received from k and in the other side the value of the last
sequence number received from k is y. Assume further that z
is larger than TJ. The root of the first side will send to the root

of the second side all the utilization updates generated from
node k with sequence numbers greater than y (up to z). The
root of the second side will then broadcasts this information
on its side of the new tree.

The hardware tree broadcast is much faster than the transfer
of the rootship. Therefore, if a node receives a hardware
broadcast and then is disconnected from a certain tree and
later it is reconnected, the broadcast is already terminated and
the node will not get the same message again. The sequence
numbers exchange at the time of tree merging also cost at most
one item exchange per each topology change.

Let us now consider the case that messages may be lost (be-
cause of congestion or link errors) during the hardware broad-
cast. We employ a backup mechanism that is “piggybacked”
on the transmission of utilization updates (Section V-B). These
updates also carry topological information. However, in order
to guarantee prompt delivery with high probability, we need
that such messages will be triggered at some minimum rate.
It is very unlikely that a node will not have new utilization
information to send about its link for a long time. (See Section
V-B.) However, if this does happen, the node will send an
update if a certain time has elapsed since its previous update.
This guarantees a minimum periodic transmission rate.

So far we have ignored the possibility that a node fails
and its Seq-No counter is erased. Since we use a nonvolatile
memory for the sequence number counter this event is un-
likely. However, in case it does happen, we have added a
random number 64 bits field to the node’s name. When a
node recovers from a failure it chooses the value of this
field at random. This will differ from the previous name with
an overwhelming probability. Thus the new topology updates
sent by this node will not be discarded by other nodes, even
though they have small sequence numbers. A name that is no
longer used will disappear, due to a slow time driven backup
update and garbage collection protocol. This backup is used
anyhow to let a node “forget” about another node from which
it becomes disconnected forever. Similarly, a node that has
not heard a utilization update of some edge for a long time,
assumes that this edge is disconnected. (This backup protocol
will actually recover also from the extremely unlikely case
that the chosen node name is the same as the previous one.)

REFERENCES

[l] H. Ahmadi, J. S.-C. Chen. and R. Guerin, “Dynamic routing and call
control in high-speed integrated networks,” in Pmc. ITC-13 Wurkvhop
Copenhagen, Denmark, June 1991, pp. 379403.

[2] B. Awerbuch, I. Cidon, and S. Kutten, “Communication-optimal main-
tenance of replicated information,” in Pmc. 31st Annu. Symp. Found.

[3] R. Ballart and Yau-Chau Ching, “Sonet: Now it’s the standard optical
Cornput. Sci. St. Louis, MO, Oct. 1990, pp. 492-502.

[4] K. Bala, I. Cidon, and K. Sohraby, “Congestion control for high-speed
network, IEEE Commun. Mag., vol. 27, no. 3, pp. 8-15, Mar. 1989.

[5] A. E. Baratz, I. P. Gray, P. E. Green Jr., 1. M. Jaffe, and D. P. Pozefsky,
packet switched networks,” in Pmc. INFOCOM’YO, June 1990.

“Sna networks of small systems,” IEEE J. Select. Areas Commun., vol.
SAC-3, pp. 4 1 H 2 6 , 1985.

[6] J. Le Boudec. T h e asynchronous transfer mode: A tutorial,” Comput.
Networks ISDN Syst., no. 24, pp. 279-309, 1992.

[7] I. Chlamtac, W. Franta, and K.D. Levin, “Bram: The broadcast rec-
ognizing access method,” IEEE Trans. Commun., vol. COM-27, pp.
1183-1190, 1979.

1960 IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. 13. NO. 5, M 4 Y 1995

[X] I. Cidon and I. S . Copal, “Paris: An approach to integrated high-speed Inder Gopal (S’Xl-M’82-SM’88-F’91) recelved
private networks,” Inr. J . Digital Analog Cabled Syst., vol. I , no. 2, pp.
77-86, Apr.-June 1988.

the B.A. degrcc in engineering science from Ox-
ford University, Oxford, England, in 1977. and the

[9] -, “Control mechanisms in high speed networks,’’ in Proc. ofICC’90,
1990.

M.S. and Ph.D. degrees in electrlcal englneering
from Columbia University, NY in 1978 and 1982,

[IO] I. Cidon et al., “The pIaNET/ORBIT high-sped network,” .I. High Speed respectively.

[I I] 1. Cidon, I. Gopal, G. Grover, and M. Sidi, “Real-time packet switching:
Networks. vol. 2, no. 3, pp, 171-208, 1993.

tion serving in various technical and management
Since 1982. he has been with the IBM Corpora-

A performance analysis,” IEEE 3. Select. Areas Commun., vol. 6, pp.
1576-1586, Dec. 1988.

positions. Currently, hc is Division Director of Ar-

[LZ] I. Cidon, I. Copal, and S Kutten, “New models and algorithms for
chilecture in the Networked Appllcations Solutions
Division. Previously, he was Manager of the Ad-

future networks,” In PrOc. 7th ACM SYmP. PrinciP. Distrrb. COmPUt., vanced Networking Lab at the T. J. Watson Research Center. In that capacity
Aug. 1988, pp. 7&89. he was involved in the NSFDARPA sponsored AUKORA Gigabit testbed,

[I31 1. W o n , 1. Gopal, and A. SegaL “Connection establishment in high and in several other research pro;ects in the area of high-speed networking.
’peed networks,” IEEwACM 2 vol PP- 469481, Aug. HIS other research interests are in distributed algorithms. communication

S. Even, Graph Algorifhms. Rcckvilb, MD: Computer Science, 1979.
1993.

I. Gopal and R. Guerin. “Network transparency: The plaNET approach,”
IEEWACM Truns. Net., vol. 2, pp. 226239, June 1994.
R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm
for minimum-weight spanning trees,” ACM Truns. Progrumming L m g .
Sysf . , vol. 5 , no. 1, Jan. 1983. pp. 66-77.
M. R. Carey and D. S. Johnson, Computers and Intructubilify. New
York Freeman, 1979.
A. Herzberg and S. Kutten. “Fast isolation of arbitrary forwarding
faults.” in Pmc 8th ACM PODC. AUP. 1989.

protocols. network security, high-speed packet switches, and multimedia
communications. He has published extensively in these areas. He is an
editor for the Journal on High Speed ,Vehvorking and ha4 previously served
as an area editor for Algorithmicu, guest editor for IEEE JOURNAL ON

IEEE TRANSACTIONS ON Co”macATrnN?, and technical editor for IEEE
Communications Magazine. He has served on several program committees
for conferences and workshops.

work on the PARIS high-speed network.
Dr. Gopal has received an Outstanding Innovation Award from IBM for his

SELECTED AREAS IN COMMUNIC4710NS, editor for Network PrOtOCOlS for the

~ ~~ , ~~~ ~ ~~ ~ ~~~~~ ~ ~~ ~

1191 P. Kalser, J. Midwinter, and S . Shlmada “Status and future trends in
terrestrial opical fiber systems in North America, Europe, and Japan,”
IEEE Commun. Mug.. vol. 25, Oct. 1987.

[20] J. McQuillan, I . Richer, and E. Rosen, “The new routing algorithm for
the qanet,” IEEE Trans. Commun., vOl. 28, PP. 71 1-719. May ‘980. Marc A. Kaplan rcccivcd the B.A. degree from Cornell University in 1974,

P I 1 M. W. Z . LW 1. Cidon, and I. Gopal, “Congestion conml and the ph.D. degree i n engineering and computer science from
through input rate regulation,” IEEE Trans. Commun., vol. 41, no. 3, ~ ~ i ~ ~ ~ ~ i ~ ~ in 1978,
pp. 471-476, March 1993. He has held various Staff positions at the T. J. Watson Research Center

[22] I. Turncr, “Ncw dircctions in communications, or which way to the since the Summer of ,978, where he has designed and file and
mformation age?” / M E Commun. Mag., vol. 24, Oct. 1986. security subsystems, operating system kernels, and wmnlunlcations systems.

He architected, coded, and managed the software for the ParisR-Planet-
Orbit project. Currently, he is a Program Manager with IBM Nerwnrked
Applications Services.

- D ~ ~

Israel Cidon (M’85-SM’W) received the B S c
(summa cum laude) and the D.Sc. degrees from
the Technion-Israel Institute of Technology in 1980
and 1984, respectively, both in electrical engineer-
ing. From 1984 to 1985, he was on the Faculty Shay Kutten (“90) received the Master’s degree
with the Electrical Engineering Department at the (on scheduling of Radio Broadcasts) and the Ph D.
Tcchnion. In 1985 hc joincd thc IBM T. J. Watson degree (on distributed algorithms) in computer sci-
Research Center, NY, where he was a Research ence from the Technion. lsracl in 1984 and 1987,
Staff Member and a Manager of the Network Archi-
tectures and Algorithms group involved in various Since 1982 he has been with IBM T. 1. Watson
broadband networkmg projects. Recently, he joined Research Center, as a Postdoctoral Fellow, as a

Sun Microsystems Labs in Mountain View, CA, as Manager of High-speed Research Staff Member, and as the Manager of
Networking working on various ATM projects including Openet-an open the Network Architecture and Algorithms Group.
ATM network control platform. Since 1990 he is also with the Department of He has dcvcloped algorithms for network control.
Electrical Engineering at the Technion. He currently serves as an editor for the network security, and distributed processing control.

respectively.

IEEEIACM T R A N S A ~ ~ I O N S ON NETWORKS. Previously he served as the Editor He is also an editor in wireless networks and served on several program
for Network Algorithms for the IEEE TRANSACTION^ ON COMMUNICATIONS and committees for conferences and workshops.
as a guest editor for Algorithmicu. In 1989 and 1993 he received the IBM Dr. Kutten recewed an Outstanding Innovation Award in 1992, and a
Outstanding Innovation Award for his work on the PARIS high-speed network Supplemental Outstanding Innovation Award from IBM for his work on IBM
and topology update algorithms respectively. His research interests Include BBNS high-speed network: an Outstanding Innovation Award (in 1994) from
high-speed wide and Iucal area networka, distributed network algorithms, LBM for his work on NETSP Network Security Server, and an IBM Research
network performance and wireless networks. Division Award fur his work on IBM Samba Wireless LAN.

