
Greedy Packet Scheduling

Israel Cidon� Shay Kutteny Yishay Mansourz David Pelegx

Abstract

Scheduling packets to be forwarded over a link is an important subtask of the

routing process both in parallel computing and in communication networks. This

paper investigates the simple class of greedy scheduling algorithms, namely, algorithms

that always forward a packet if they can. It is �rst proved that for various \natural"

classes of routes, the time required to complete the transmission of a set of packets

is bounded by the number of packets, k, and the maximal route length, d, for any

greedy algorithm (including the arbitrary scheduling policy). Next, tight time bounds

of d + k � 1 are proved for a speci�c greedy algorithm on the class of shortest paths

in n-vertex networks. Finally it is shown that when the routes are arbitrary, the time

achieved by various \natural" greedy algorithms can be as bad as
(d
p
k+ k), for any

k, and even for d =
(n).

�IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, and Faculty of Electrical

Engineering, The Technion, Haifa 32000, Israel. cidon@ee.technion.ac.il
yIBM T.J. Watson Research Center P.O. Box 704, Yorktown Heights, NY 10598, kutten@watson.ibm.com
zLaboratory for Computer Science, MIT, Cambridge, MA 02139. Partially supported by IBM graduate

fellowship. mansour@theory.lcs.mit.edu
xDepartment of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,

Israel. peleg@wisdom.weizmann.ac.il. Supported in part by an Allon Fellowship, by a Walter and Elise Haas

Career Development Award and by a Bantrell Fellowship. Part of the work was done while visiting IBM

T.J. Watson Research Center.

1 Introduction

The task of managing the delivery of packets in a distributed communication network is

intricate and complex. Consequently, many routing strategies incorporate design choices

directed at simplifying the process. One prime example for this type of choice is the decision

to create a clear distinction between two subtasks, namely, route selection and packet sched-

uling. The �rst subtask involves selecting for each packet the route it should use from its

source to its destination. This selection is done in advance, before the packet actually leaves

its source. The second subtask concerns the transmission stage itself, and involves deciding

on the schedule by which the di�erent packets are to be forwarded over each edge along their

routes. At this stage, the packets are restricted to their predetermined routes, and cannot

deviate from them. This paper concentrates on routing strategies adopting this separation,

henceforth referred to as �xed-route strategies, and in particular on the scheduling subtask.

A second type of design choice, aimed at simplifying the scheduling process considerably,

is to make scheduling decisions locally and per packet, rather than globally. The scheduling

policy is thus restricted to the selection of local rules for managing the queues on outgoing

links, namely, resolving the conicts between the di�erent packets that need to be advanced

on the same outgoing edge. Intuitively, a local algorithm has the property that the rules used

by a vertex in order to schedule awaiting packets rely only on information concerning these

packets (typically contained in the packets' headers), such as the identity of the source and

destination, the distance traversed by the packet so far, the arrival time at the current vertex

etc. In contrast, a global algorithm can base its decisions on additional global information

on the status of the network, such as the current distribution of packets in the network and

the routes of these packets.

Although the two design decisions discussed above may not generally lead to a globally

optimal algorithm, they are both widely used. In fact, one of the main distributed network

strategies for packet routing is virtual circuit [CGK88, Mar82, BG87], which is based on

�xing a predetermined logical circuit from the given end user to the given destination, and

transmitting all packets between them on this circuit. Nonetheless, similar considerations

apply also for the second common routing strategy, known as datagram routing [MRR80].

Fixed-route strategies are employed in communication networks such as SNA [Mar82],

APPN [BGGJP85] and TYMNET [BG87]. In fact all the emerging integrated high-speed

networks proposals such as the international Broadband ISDN (ATM) [CCITT90] and the

IBM plaNET Gigabit network [CGGG92], are based on �xed routing strategies. As for the

scheduling policy, most networks use a combination of FIFO, certain priority parameters,

1

and ow control information, to determine the next packet to be forwarded. All of these

mechanisms are \approximately" local (although ow control adds some global avor). The

main reasons for these choices are based on their advantages from an engineering point of

view, namely, their simplicity and low complexity (compared to the global approach), which

make them suitable for hardware implementation.

Packet scheduling algorithms for �xed-route strategies were studied by Leighton, Maggs

and Rao [LMR88]. Although motivated by routing problems in speci�c networks realizing

parallel machines, their paper studies the problem on networks of arbitrary topology. The

�rst result of [LMR88] is a proof that there exists a schedule that terminates in O(d +

c) time, where d is the maximal route length and c is the maximal congestion, i.e., the

maximal number of packets that traverse any edge. However, it seems that determining this

schedule requires a complex centralized computation, relying on global information. The

paper provides also some randomized distributed protocols for the problem. These protocols

are simple, online and local (in the sense discussed above). The �rst applies to arbitrary sets

of paths and requires O(c + d log jV j) time. The second protocol applies to the case when

the paths are leveled with l levels. Informally, a set of paths is leveled if the vertices of the

network can be partitioned into l levels in such a way that each edge of the paths connects

two consecutive levels. The protocol completes the routing in O(c + l+ log jV j) time. Both

protocols of [LMR88] assume all packets start at the same time.

In contrast with both types of algorithms considered in [LMR88], in this paper we consider

the complexity of deterministic distributed algorithms. In fact, we concentrate on a class of

very simple on-line scheduling algorithms, termed greedy algorithms. A greedy algorithm

is an algorithm satisfying the property that at each time unit, the set of packets that are

forwarded is maximal, i.e., if there are messages waiting to be forwarded on some link then

one of these messages is forwarded. Note that this includes also an algorithm that selects

the message to be forwarded next on each link arbitrarily from among the waiting messages

(or alternatively, allows an adversary to decide which packet will be sent next). The class

of greedy policies is very natural [Ko78], and in fact, all packet scheduling policies used in

practical packet switching networks of which we are aware fall in this class. It is interesting

to note that the e�cient algorithm of [LMR88] is not greedy.

In the sequel we present several results concerning the behavior of greedy scheduling

algorithms. We �rst look at some restricted path classes. To begin with, in Section 3 we

show that for a leveled set of paths P, the time required for delivering packet pi by any

greedy algorithm is bounded by di + k � 1, where di is the length of the route of packet

pi and k is the total number of packets. Note that in practical networks k might be much

2

larger than c, hence the randomized algorithm of [LMR88] may perform better.

Our result for the leveled case implies the same result for the natural case of unique

subpaths. A route collection P obeys the unique subpaths property if for every pair of vertices

u and v, all the subpaths connecting them in any path of P are identical.

In Section 4 we consider the class of shortest paths. For this class, we present a strategy

that guarantees a bound of di + k � 1 assuming all packets start at the same time. This

strategy is based on advancing the packet that has progressed the least so far. A di�erent

strategy, based on �xed priorities, was independently proposed in [RVN90], and shown to

yield the same bound. In an earlier version of this paper [CKMP90] we conjectured that the

same bound is true for any greedy algorithm. This conjecture has recently been resolved in

the a�rmative [MP91].

We then turn to general route classes. In contrast with the special cases discussed above,

we show in Section 5 that greedy algorithms might behave badly for an arbitrary set of paths.

This is true even when we consider natural greedy schedulers, like �xed priority, FIFO, or

preferring the packet that traversed the minimum (or maximum) distance so far. We show

that in such a case the time may be
(d
p
k + k). These negative results hold even for the

case where both k = �(jV j) and d = �(jV j). This strengthens the counter-examples given

in [LMR88] for the case of long routes and a large number of packets.

2 Model

We view the communication network as a directed graph, G = (V;E), where an edge (u; v)

represents a bidirectional link connecting the processors u and v. We assume synchronous

communication, i.e., the system maintains a global clock, characterized by the property that

a packet sent at time t is received by time t+ 1.

Next let us de�ne formally the routing problem and its relevant parameters. The input

to the problem is a collection P of k packets pi and k associated routes �i, 1 � i � k.

Packet pi, marked by an identi�er Ii, is originated at vertex Ai, its destination is Bi, and

it is transmitted along the route �i. We deal with vertex-simple (or, loop-free) routes. The

length of the route �i is di, and we denote d(P) = maxifdig.
Two packets are said to collide at time t if they are currently waiting at the same vertex

to be sent over the same link. The scheduling algorithm has to decide at each time t which

packet to forward at time t. (Note that the paths are �xed, and hence the algorithm has no

choice with respect to the edges that a packet traverses.) Let �Ai denote the time at which

3

packet pi was sent from its originator Ai, and let �Bi denote the arrival time of pi at its

destination Bi. Let Ti denote the time elapsing from �Ai until �Bi , i.e., Ti = �Bi � �Ai . The

schedule time of P is T (P) = maxifTig.
Some of our results apply only to special path types. Below we characterize these route

classes.

A set of paths P is leveled if there exists an assignment level : V ! [1; � � � ; jV j], such that
for each path � = (v1 : : : vl), level(vj) = level(vj�1) + 1. A directed graph is leveled if there

exists an assignment level, such that for every directed edge (u; v), level(u) + 1 = level(v).

In a leveled directed graph, every set P of routes is leveled.

The path �i is a shortest path if its length equals the distance between its endpoints Ai

and Bi. A set of paths P is shortest if every path �i 2 P is a shortest path.

A set of paths P has the unique subpaths property if for every pair of vertices u and v,

all the subpaths connecting them in any path of P are identical; that is, if both the routes �i

and �j go through u and v, then the segments of the paths connecting u and v are identical.

3 Leveled routing

In this section we prove our �rst result, concerning greedy scheduling on leveled paths.

Theorem 3.1 Let P be a set of k leveled paths. Then for any greedy algorithm used for

routing P,

1. every packet pi arrives within Ti � di + k � 1 time units, and

2. the algorithm has schedule time T (P) � d(P) + k � 1.

Proof: For each packet pi and t � 0, let level(pi; t) denote the number of the level where pi

resides at time t. A level L is said to be occupied at time t if there exists a packet pi such

that level(pi; t) = L. The proof is based on considering, for any t � 0, the set L(t) of levels
that are occupied at time t. We shall argue that at every time unit there is some progress,

in the sense that either the number of occupied levels grows, or the lowest occupied level

(the one whose number is the smallest) becomes unoccupied.

For uniformity of presentation, we adopt the convention that at any time t > �Bi (the time

pi reaches its destination), level(pi; t) is incremented by one. This can be thought of as if the

packet continues progressing inde�nitely along some path �0i extended from the destination

4

Bi and dedicated to it, and hence never collides afterwards. This does not restrict generality

in any way, since such an extension �0i of the packet's route has no inuence on the routes

of other packets, and the arrival time of the packet is still considered to be �Bi , the time it

has reached its original destination Bi.

Consider the collection L(t) of occupied levels at time t. We break this collection into

\blocks" of consecutive levels (separated by unoccupied levels). We de�ne the following

parameters for each packet pi:

� B(pi; t) is the block of pi at time t (i.e., the block containing level(pi; t)).

Suppose that B(pi; t) = fL;L+ 1; : : : ;Hg. Then

� min(pi; t) = L.

� max(pi; t) = H.

� width(pi; t) = jB(pi; t)j � 1 = max(pi; t)�min(pi; t) (= H � L).

Note that the number of occupied levels at any given time t is bounded by the number

of packets, jL(t)j � k, and therefore the maximum block size satis�es

width(pi; t) � k � 1: (1)

Claim 3.2 max(pi; t+ 1) �max(pi; t) � 1 for every t � 0.

Proof: Since the algorithm is greedy, we are guaranteed that if the levels L;L + 1; : : : ;H

are occupied at time t, then the levels L + 1; : : : ;H + 1 are occupied at time t + 1. Also,

L � level(pi; t) � H implies L � level(pi; t+ 1) � H + 1, and therefore L + 1; : : : ;H + 1 2
B(pi; t+ 1). This implies that max(pi + 1; t) � H + 1.

Corollary 3.3 Ti � max(pi; �Bi)�max(pi; �Ai).

This corollary is complemented by the following claimwhich bounds the increase inmax(pi; t)

from above.

Claim 3.4 max(pi; �Bi)�max(pi; �Ai) � di + k � 1.

Proof: Consider a packet pi whose origin Ai is at level LA = level(pi; �
A
i) and whose des-

tination Bi is at level LB = level(pi; �Bi) = LA + di: Initially, max(pi; �Ai) � LA. On the

other hand, upon arrival at the destination, max(pi; �Bi) = min(pi; �Bi) + width(pi; �Bi) �

5

LB+width(pi; �Bi). Hence by (1) we have thatmax(pi; �Bi)�max(pi; �Ai) � LB+k�1�LA =

di + k � 1

Combining Corollary 3.3 and Claim 3.4, we get Ti � di+k�1. This completes the proof

of Part (1) of the Theorem. Part (2) follows immediately from Part (1).

The natural class of paths with the unique subpaths property can be analyzed using the

above theorem.

Corollary 3.5 Let P be a set of k paths satisfying the unique subpaths property. Then for

any greedy algorithm used for routing P,

1. every packet pi arrives within Ti � di + k � 1 time units, and

2. the algorithm has schedule time T (P) � d(P) + k � 1.

Proof: We prove that the delay su�ered by any packet pi is no greater than in an execution

on a leveled graph (with the same k and di). Consider subgraph Gi induced by the route of

a particular packet pi, and consider the subpaths of this single route which are traversed by

other packets. Clearly, because of the unique subpath property each subpath is a consecutive

segment of the original route, therefore,Gi is leveled. Consider an execution of of the schedule

in the original graph (P) and observe the subgraph Gi. Let �Aj in Gi be the time at which

packet pj arrived to Gi (or pi's route) in the above execution. Note, that the schedules of pi

in Gi and in P are identical. Thus, by Part (1) of Theorem 3.1 the delay su�ered by pi in the

unique subpaths case is the same as the one in the leveled paths case we have constructed.

4 Shortest path routing

In this section we consider a scheduling algorithm for the case in which each route �i in the

set P uses a shortest path from its origin to its destination. We shall assume that all packets

start at the same time, i.e., �Ai = 0 for 1 � i � k. For every time 0 � t � Ti, let di(t) denote

the distance traversed by pi by time t (note that in particular, di(Ti) = di). If pi and pj

\collide" at time t, the algorithm resolves the collision based on the distance traversed by

the packets so far, breaking ties by packet identi�ers. Thus the algorithm will prefer pi i�

di(t) < dj(t) or (di(t) = dj(t) and Ii < Ij):

We refer to this algorithm as the Min Went algorithm. The rest of this section is devoted

to proving the following theorem.

6

Theorem 4.1 If the set of paths P consists of shortest paths and �Ai = 0 for 1 � i � k (i.e.,

all the packets start at the same time) then the Min Went scheduling algorithm guarantees

1. Every packet pi arrives at time Ti � di + k � 1.

2. the schedule time is T (P) � d(P) + k � 1.

We begin the proof by pointing out the following trivial fact regarding the relationship

between packets in consecutive collisions.

Fact 4.2 If pi and pj collide twice (at times t1 and t2), then the relation between di(t) and

dj(t) are the same at both times.

De�nition 4.3 Given an execution of the algorithm the collision relation C is de�ned as

the collection of all triples hpi; pj; ti such that at time t packets pi and pj collide (i.e., they

are at the same vertex, waiting for the same edge), and pi wins the collision resolution and

gets to use the edge (at time t).

Since only one packet can go on a speci�c edge at a time t we can deduce the following

fact.

Fact 4.4 For every p; t there is at most one triple hp0; p; ti in C.

Consider some packet p, without loss of generality we term it p0. If this packet is never

delayed, then T0 = d0 and we are done. Hence suppose the packet was delayed along its

route. We now de�ne a delay sequence for p0. Let t0 be the last time that packet p0 was

delayed. (Note that such a time exists since the delays are �nite; a bound of T (P) � k �d(P)
on the scheduling time of any greedy algorithm is trivial.) Namely, there is a triple hp1; p0; t0i
in C, and there is no such triple for p0 in later times t > t0. (Recall that by Fact 4.4 there

is only one such p1.) Let t1 be the last time p1 was delayed before time t0. Namely, there

is a triple hp2; p1; t1i and no such triple for p1 in any time between t1 and t0. Continue the

sequence in this way until reaching a packet p` that was not delayed prior to time t`�1.

It is convenient to de�ne also t�1 = T0 (the arrival time of p0) and t` = 0 (the start time

of p`).

We get a sequence DS of triples

DS = hp1; p0; t0i; hp2; p1; t1i; : : : ; hp`; p`�1; t`�1i;

where T0 = t�1 > t0 > t1 > : : : > t`�1 > t` = �A` = 0.

Lemma 4.5 T0 � d0 + `.

7

Proof: By de�nition of the relation C and the Min Went scheduling, we have the inequalities

(Xj) dj+1(tj) � dj(tj), for j = 0; 1; : : : ; `� 1.

For j = 0; : : : ; ` let �j denote the segment of the route �j traversed by pj between

the times tj (when it \lost" in the collision resolution) and tj�1 (when it won), and let

�j = j�jj = dj(tj�1)� dj(tj): Substitute this de�nition in the inequalities (Xj) to get

(Yj) dj+1(tj+1) + �j+1 � dj(tj), for j = 0; : : : ; `� 1.

We also have

(Y�1) d0(t0) + �0 = d0(t�1) = d0.

Summing the inequalities (Yj) for j = �1; 0; : : : ; ` � 1, and recalling that d`(t`) = 0, we

get

�0 +�1 + : : :+�`�1 +�` � d0 (2)

We also construct a chain of equalities for the times involved in these collisions. Since

packet pj (for 0 � j � `� 1) was delayed at time tj but never delayed since that time until

time tj�1, we have

(Zj) tj�1 = tj + 1 +�j, for j = 0; : : : ; ` � 1.

We also have

(Z`) t`�1 = d`(t`�1) = �` + t` = �`

Combining the equalities (Zj) for j = 0; : : : ; ` we get

T0 = t�1 = �0 +�1 + : : :+�`�1 +�` + `: (3)

Combining Eq. (2) and (3), we get that Ti0 � di0 + `; and the lemma follows.

In order to complete the proof of the theorem, it therefore remains to bound the length

of the sequence DS. This is done by proving the following claim.

Lemma 4.6 The packets pj appearing in the triples of the sequence DS are all distinct.

Proof:

The proof is by a contradiction. Assume that some packet occurs twice in the sequence,

for instance pm = pr for m > r. (See Figure 1.) By the structure of the sequence, every two

consecutive packets are distinct, so necessarily m � r + 2. This means that the sequence

contains a subcycle

hpr+1; pr; tri; hpr+2; pr+1; tr+1i; : : : ; hpm�1; pm�2; tm�2i; hpm; pm�1; tm�1i = hpr; pm�1; tm�1i

8

Figure 1: Cycle in delay sequence

where tr > tr+1 > ::: > tm�1, and m � r + 2.

We argue that among the inequalities (Xj), for r � j � m � 1, at least one of the

inequalities is strict. Otherwise, all the collision resolutions in the cycle were made on the

basis of packet identities, so Ir = Im < Im�1 < : : : < Ir+1 < Ir; contradiction. It follows that

among the corresponding inequalities (Yj), for r � j � m � 2, plus (Xm�1), at least one is

strict. Combine these inequalities in a chain, to get

dm(tm�1) + �m�1 + : : :+�r+1 < dr(tr): (4)

Finally, let �� denote the segment of the route �r traversed by pr between the times tm�1
(when it won) and tr (when it lost), and let �� = j��j = dr(tr)� dr(tm�1). We get that

�m�1 + : : :+�r+1 < dr(tr)� dr(tm�1) = ��;

or in other words, the segment �� of �r is not shortest; contradiction to the assumption that

all the paths in P are shortest paths.

Corollary 4.7 The sequence DS is of length ` � k � 1.

Combining this corollary with Lemma 4.5 completes the proof of Part (1) of the theorem.

Part (2) follows immediately.

9

5 Greedy algorithms in the general case

The purpose of this section is to demonstrate the fact that, unlike the case of leveled routes,

for general route classes not every greedy algorithm delivers the messages fast. We start by

constructing a directed graph and a set of paths, that will be used as building blocks for our

main lower bound construction.

V
1,in

V
1,out

V
2,in

V
2,out

G0

L
1

L
2

V V

L

x,in x,out

x

V
0

Figure 2: The graph Gx;y.

The construction is parameterized by two integers x and y. The constructed directed

graph Gx;y (see Figure 2) is composed of a line of 2x + 1 vertices, denoted by v0, v<1;in>,

v<1;out>, � � �, v<x;in>, v<x;out>. In addition, each \in" vertex (i.e., v<i;in>) is connected to
its corresponding \out" vertex (i.e., v<i;out>) also via a \detour" path of y vertices (denoted

by Li). Intuitively, the line is the \main" route; the Li subgraphs are used to \side track"

packets and delay them, thus causing them to collide repeatedly.

A more formal construction follows. De�ne the graph Gx;y = (V;E) to be the union of

the subgraphs G0; L1; :::; Lx; C.

The vertices of the subgraph G0 are

V (G0) = f1; � � � ; xg � fin; outg [fv0g;
and the edges are

E(G0) = f(v<i;out>; v<i+1;in>) : 1 � i � x� 1g
[f(v<i;in>; v<i;out>) : 1 � i � xg
[f(v0; v<1;in>)g:

The graph L is a straight line of y vertices and y � 1 edges, i.e.,

V (L) = fl1; � � � ; lyg and E(L) = f(li; li+1) : 1 � i � y � 1g:

10

For 1 � i � x, the subgraph Li is a copy of the graph L, with superscript i.

Finally, the edges in C connect the endpoints of each subgraph Li to the corresponding

vertices v<i;in> and v<i;out> on the path G0.

C = f(v<i;in>; li1) : 1 � i � xg [f(liy; v<i;out>) : 1 � i � xg

Let

Gx;y = G0 [C [[

1�i�x
Li:

The paths Px;y are the following. All the paths start at vertex v0, and proceed through

v<i;in> and v<i;out>, for i = 1; : : : ; x, ending at v<x;out>. There are two types of paths: a

\long" path, pl, consisting of x(y + 2) edges, and a \short" one, ps, consisting of 2x edges.

The \short" path ps travels directly through the graph G0. The \long" path pl takes all

the \detours" Li, i.e., it travels from each \in" vertex v<i;in> to the corresponding \out"

vertex v<i;out>, via the path Li. Formally, ps = E(G0); and

pl =
[

1�i�x
E(Li) [f(v<i;out>; v<i+1;in>) : 1 � i � x� 1g [f(v0; v<1;in>)g [C:

Let us �rst illustrate the use of this construction by proving a weaker lower bound, and

then proceed to our main lower bound. The scheduling policy that we use for the queue

scheduling is a �xed priority. This lemma will later be used to prove our main lower bound.

Lemma 5.1 For any x and y there exist a graph Gx;y and a collection of y + 1 paths Px;y,

such that there is a packet that traverses a path of length O(x) and requires
(xy) time under

the �xed priority queueing policy.

Proof: Given x and y construct Gx;y as above. The set Px;y consists of y+1 paths, of which

y are identical to the \long" path pl, and the remaining one is the \short" path ps. The last

packet has the lowest priority. Note that whenever the low priority packet reaches an \out"

vertex it is delayed y times, once by each other packet. It is also delayed y times in vertex

v0. Therefore, the total delay of this packet is 2x+ xy.

The above lemma shows that for some packet the delay may be
(xy), even though

the number of edges in its route is only 2x. This lower bound can be strengthened in two

respects. Note that in the above construction, some packets have routes of
(xy) edges,

which is as high as the lower bound. Also, the number of vertices in the constructed graph

is large (i.e.,
(xy)). In the setting of the next theorem, both the graph size and the route

lengths are small relative to the derived lower bound.

11

Theorem 5.2 For every d and k there exist a graph Gd;k and a collection of k paths P whose

schedule time under the �xed priority algorithm is T (P) =
(d
p
k), and j V (Gd;k) j= O(d).

Proof: First we create a graph that achieves the delay bound, but has more vertices, and

then we show how to reduce the number of vertices. Consider the graph Gx;y de�ned in

Lemma 5.1, with the parameters x = d=
p
k and y =

p
k. (We assume for simplicity that x

and y are integral; if x < 1 then k > d
p
k, in which case the claim is trivial.) We take

p
k

copies of Gx;y, denoted by Gi
x;y, and connect the ith copy to the (i+1)st copy by identifying

the last vertex of Gi
d;k with the �rst vertex of Gi+1

d;k (i.e., vi
<x;out>

� vi+10).

We partition the packets into
p
k groups of decreasing priorities, each group is of

p
k

packets. All packets go from v1
<1;in>

to v
p
k

<
p
k;out>

. The paths of all the packets within the

same group are identical. The ith group traverses in Gj , j 6= i, the shortest path from the

�rst vertex to the last vertex (i.e., ps). In Gi the packets traverse all the loops Lj (i.e., use

pl). Note that all the paths are of the same length, which is O(d).

Note that the packets in the ith group delay the packets in groups j > i by
(d) time

while traversing G1 (and a similar thing happens as they traverse Gl for l = 2; 3; : : : ; i� 1).

This means that the last packet reaches its destination after
(d
p
k) time.

V
1,in

V
1,out

V
2,in

V
2,out V V

x,in x,out

L
1

L
2

Lx

V
1,in

V
1,out

V
2,in

V
2,out V V

x,in x,out
V

1,in
V

1,out
V

2,in
V

2,out V V
x,in x,out

G2 G
k

G1

C

V
0

Figure 3: The graph Gd;k.

The number of vertices in the construction so far is O(d
p
k). In order to reduce the

number of vertices to O(d) we modify the way in which we combine the
p
k copies of Gx;y.

For every i, we collapse the
p
k subgraphs Li in the graphs G1; : : : ; G

p
k into a single copy,

12

namely, Li of G1. See Figure 3.

A similar, although somewhat more complicated proof can be constructed for other greedy

algorithms, speci�cally the Min Went policy of Section 4, the analogous Max Went policy,

or the FIFO policy, namely, the algorithm that resolves a collision between two packets in

vertex v by sending the �rst to have arrived at vertex v. Details can be found in [CKMP90].

Acknowledgment

It is a pleasure to thank Amotz Bar-Noy for working with us in the early stages of this

research. We are also grateful to the anonymous reviewers for their excellent comments and

for simplifying some of the proofs, notably in section 3.

13

References

[BGGJP85] A. E. Baratz, J.P. Gray, P.E. Green, J.M. Ja�e, and D.P. Pozenski, SNA

Networks of Small Systems, IEEE Trans. on Comm. sac-3, May 1985, 416{426.

[BG87] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, Englewood Cli�s,

NJ, 1987.

[CCITT90] CCITT SG XVIII, Draft Recommendation I.121: Broadband Aspects of ISDN,

Geneva, January 1990

[CGGG92] I. Cidon, I. S. Gopal, P. M. Gopal, R. Guerin, J. Janniello and M. Kaplan,

The plaNET/ORBIT High Speed Network, IBM Research Technical Report,

RC18270, Aug. 1992.

[CKMP90] I. Cidon, S. Kutten, Y. Mansour and D. Peleg, Greedy Packet Scheduling, Proc.

4th WDAG, Bari, Italy, Sept. 1990. LNCS Vol. 486, Springer Verlag, pp. 169{184.

[CGK88] I. Cidon, I. Gopal and S. Kutten, New Models and Algorithms for Future Net-

works, Proc. 7th Annual ACM Symp. on Principles of Distributed Computing,

Toronto, Canada, August 1988, 74{89.

[Ko78] H. Kobayashi, Modeling and Analysis, Addison-Wesley, 1978.

[LMR88] T. Leighton, B. Maggs, and S. Rao, Universal Packet Routing Algorithms, Proc.

29th IEEE Symp. on Foundations of Computer Science, White Plains, NY,

October 1988, 256{269.

[MP91] Y. Mansour and B. Patt-Shamir, Greedy packet scheduling on shortest paths,

In Proceedings of the 10th Annual ACM Symposium on Principles of Distributed

Computing, August 1991.

[Mar82] J. Martin, SNA: IBM's Networking Solution, Prantice Hall, Englewood Cli�s,

NJ, 1982

[MRR80] J. McQuillan, I. Richer and E.C. Rosen, The New Routing Algorithm for the

ARPANET, IEEE Trans. on Commun. com-28, May 1980, 711{719.

[RVN90] P. I. Rivera-Vega, R. Varadarajan, and S. B. Navathe, The �le redistribution

scheduling problem, In Data Eng. Conf., pages 166{173, 1990.

14

