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Throughput Properties of Fair
Policies in Ring Networks
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Abstract— We consider a slotted ring in which simultaneous
transmissions of messages by different stations is allowed, a
property referred to as spatial reuse. Ring networks with spatial
reuse can achieve significantly h~her throughput than standard
token rings but they also introduce the possibility of starvation
for some nodes on the ring. To atteviate this problem, various
poticies have been suggested in the literature. Our objective
is to characterize the node throtrghpttts achievable by generat
transmission policies in ring networks with spatial reuse and
then to evaluate the throughput trade-off for a class of poticies
that has been proposed in the literature in order to avoid
starvation. Specifically, we study a policy that is based on the
idea of allocating transmisAon quotas to the nodes. Each node is
guaranteed transmission of his quota within a speeilied interval.
We show that by appropriately allocating the quo- policies that
satisfy generat optimatity criteria-in particular criteria retated
to fairness-can be designed. We also study the asymptotic
behavior of the quota policy when either the quotas or the number
of nodes increase.

Index Terms-Ring Networ~ Spatial Reuse, Scheduling Poli-
cies, Fair Policies, Asymptotic Analysis

I. INTRODUCTION

IN RECENT YEARS, the dramatic increase in transmis-
sion speeds has drastically altered many of the operating

assumptions of communication networks. In the local area
(LAN) environment, the effort towards defining new ap-
proaches that take better advantage of the available technology
has resulted in a number of new standards and architecttue
proposals [1], [2], [5], [6] and led to a renewed interest in
rings networks that employ spatial reuse [5], [6], [10] as

an attractive alternative for new high speed LAN’s. Spatial
reuse, also termed destination release, has the potential to
significantly improve net work throughput by allowing multiple
simultaneous transmissions on the LAN as long as they take
place on different links. The significance of this advantage
has been recognized, and proposals have even been made to

upgrade some of the early high speed LAN standards so that
they cart support this feature, e.g., erasure nodes in DQDB,
etc. [11], [14].

When applied to ring networks, spatial reuse does increase
throughput but it also introduces the possibility of starvation

for nodes on the ring. Specifically, it is possible that certain
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nodes be denied access to the ring for extended periods of time,
while others enjoy uninterrupted transmissions. This results in

art unfair allocation of ring bandwidth between the nodes that
are sharing the same ring. It is, therefore, necessary to provide
mechanisms that will enforce a fair allocation of network
resources while pmerving their efficient sharing.

The importance of this problem has been recognized not
only in the context of LAN’s but also for wide area networks,

e.g., see [8], [13]. Considerable work has been done to
address this issue in rings that employ spatial reuse and
several algorithms have been proposed that attempt to preserve
fairness without significantly impacting ring throughput [5],
[6], [15]. It is beyond the scope of this paper to compare the
respective merits of all these algorithms. Rather, our focus is
on understanding and sizing the loss of network throughput
incurred when attempting to guarantee fairness. This can then
be applied to the analysis of existing policies and the design
of new and improved ones. Since the focus in this paper is
on node throughputs, we assume that the nodes are full with

packets always waiting for transmission. The study of the
access queue at a node as a function of the nodal arrival
processes and destinations distributions, clearly a topic of
interest, is beyond the scope of this paper. We note, however,
that our model also provides insight to the operation of systems
with finite arrival rates under appropriate time scales. Indeed,

even in such systems, there may be relatively long time
intervals of congestion, during which a large number of nodes
have nonempty queues, although in the long run the queues
will become empty again. During those intervals of congestion,

it is important to assure the proper operation of the system and
it is on this aspect that the current paper concentrates on.

Our objective is to characterize the node throughputs achiev-
able by general transmission policies in ring networks with
spatial reuse and then to evaluate the throughput trade-off for
a class of policies that has been proposed in the literature
in order to avoid starvation. Specifically, we study a policy
that is based on the idea of allocating transmission quotas

to the nodes, see [5], [6]. Each node is guaranteed transmis-
sion of his quota within a specified interval. We show that
by appropriately allocating the quotas, policies that satisfy
general optimality criteria-in particular criteria related to
faimes~an be designed. We also study the node throughputs
as either the quotas or the size of the network increase. It
is found that for a fixed number of nodes, as the quotas

increase proportionally, the node throughputs approach the
optimal values exponentially fast when there is only one
bottleneck node in the ring. When more than one bottleneck
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nodes exist, the convergence speed is O(v– 1/2), where v is
the node quota. When the number of nodes increases, for a
wide class of message destination probabilities the optimal
node throughput is achieved even when the quota sizes remain

constant.
The rest of the paper is organized as follows. Section H

precisely defines the ring model and the relevant notations. The
throughput space of the ring is then characterized in Section
III. Section IV contains the results on the asymptotic behavior
of the policy as either the quotas or the number of nodes
increase.

11. SYSTEM MODEL

We first introduce some notation. The symbols e,@ refer
respectively to subtraction and addition modulo M, the num-

ber of nodes in the ring. If the index k refers to nodes we

denote ~~=i x~ := xi + xiol + . + z~,ll + xn. We define
&l = {0,... ,M – 1} and for a sequence {X(k) }p=l, we
denote X := X(l).

System Model. We consider a unidirectional ring with M
nodes. The nodes are numbered starting from zero, so that

the node next (downstream) to node i in the direction of

message transmission is node i @ 1. The round trip delay
of the ring is O. The last assumption is made in order to
simplify the discussion. As we will see in Section IV our
methodology can also be applied to models with nonzero round
trip delays such as the one studied in [ 12]. The system is
slotted, that is, time is divided in slots of length 1 and the
nodes can transmit messages at the beginning of each slot.

Slot T corresponds to the time interval [T, T + 1). We assume

that the length of each message is one slot. There is an infinite
queue of messages in each node and the destination of the
kth message in the queue of node i is denoted by Di(k).
The sequence {Di (k) }~=1 consists of i.i.d. random variables
independent of the destination sequences in the other nodes.

We set q,J := Pr(D~ (k) = j) (note that we do not exclude
the possibility that qii > 0, that is, the message has to travel
around the ring - broadcast message). Multiple messages can
be transmitted at the same time on the ring. Assume that at
the beginning of a slot, node i f3 1 transmits a message with

destination node j. If j = i, node i can transmit one of its
messages in the same time slot, while it receives the message
from node i @ 1. If j # i, then, in the same slot, node i can
either retransmit the upstream message or it can send one of
its own messages and store the upstream message for later
transmission. Although restrictions are imposed in practice on
the number of upstream messages that a node can hold, we
consider the operation in this generality initially, in order to
describe the throughput space of the system under general
scheduling policies (see Section III).

We now specify the class of admissible message transmis-
sion policies. Let SiJ (T) be the number of messages sent up
to time T, T z 1, by node i with destination node j and

S,(T) := ~$~~1 Sij(T). Let also R,~(T) be the number of
messages received by node j with origin node i and Ri (T) :=
~J!:-l

, _. R,, (’7’). We denote by II the class of policies that
satisfy the following properties.

1)

2)

3)
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The long term transmission rate of Sij (T), ~j :=
lim~+m Sij (’T)/T, exists for all i, j. Note that we do

not require that the limit be the same for all sample
paths. That is, ~j can be a random variable.

The long term reception rate (throughput) of &j(T)
exists and is equal to the transmission rate ViJ.
The long term proportion of messages originated at node
i with destination node j is equal to the proportion of
messages with destination j that are in the queue of node
z when the system starts. That is, if lim~+m Si (T) =
cc, then

Sij(T)
— .qij.

~lm~ Si (T)

These assumptions are mainly technical and do not impose
any significant restrictions on the class of practical transmis-
sion policies. For the system under consideration, however,
additional constraints on the admissible policies are imposed.
First, the buffer sflace available at a node for the storage
of messages originated in other nodes is limited to a single
message. This buffer space is referred to as the “ring buffer.”

Second, each node provides priority to the messages originated

in other stations. Due to these two requirements, a single
ring buffer assures the delivery of all messages without the
possibility of buffer overflow. It this way, the use of expensive
fast buffers is avoided and the fast delivery of messages
entering the network is guaranteed. A ring that employs a
policy m E II that has the above two additional properties
will be called a “buffer insertion ring.” For fairness reasons

a third constraint is often imposed on the admissible policies.

Specifically, it is required that a policy guarantees a finite

upper bound on the “charnel access time,” that is, the time
elapsed between two successive transmissions of messages
from the same node. The class of policies from II which
have the three additional properties described above will be
denoted by IIo.

III. THROUGHPUT SPACE

ht W = ~~=~ * Vij be the throughput of node i under a
policy n E H. We are interested in finding the set of values

that the vector V := {VO, . . . ,VM_l} can take when r is
employed. We call this set of values the “throughput space”
of the ring and denote it by V.

Assume first that Vi >0, z E M. Since n E II, this implies

that lim~+~ Si(T) = lim~+~ Ri(T) = CC. I--et L~~(T) be
the number of messages with origin node i that passed through
node m up to time T ( Lii (T) denotes the number of messages

originated by node i up to time T). Clearly,

i@M

~ Rij(T) < ~im(T)

~=mel

ad since ~i~M Lirn(T) < T, we have that

i~j;g,l zy ~ 1z
(1)
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The properties of r imply that limT_wo &~ (T)/&(T) =

limT+~ Sij (~)/ Si(T’) = qij and therefore, using(1) we have
that

x aim Vi s l,m EM, (2)
i~M

where aim = ~$~~~ qij; aim is the probability that a

message generated by node i is destined to a node that is
downstream from node m, in particular, aii = 1. It is easy to
see that (2) continues to hold when Vi = O for some nodes.
From the atmve discussion we see that

M–1

vcw:={vcm~:vm>o, x aimvi s l,m E M}.

i=O
(3)

It can also be shown (see [7]) that W“ C V, where W“ is the

interior of the set W.

IV. STUDY OF A POLICYW IIo

In the rest of this paper we will study the following policy.

(~f) Each node has a ring buffer for storing a single
message originated in other nodes. In addition, with
node m E M there is an associated preassigned
integer number v~ s O called “quota” and a variable
Qm(7’) which is initialized to v~, Q~(l) = v~. At
time T node m performs the following actions.

1. If there is a message in its ring buffer, the node
transmits this message. A message transmitted by
node m @ 1 (if any) in the time slot [T, T + 1), is
stored in the ring buffer of node m.

2. Otherwise,

(a) if Q~(T) >0, the node transmits the first
message in its queue and sets

Qm(T) := Qm(T) -1.

A message transmitted by node m @ 1 (if

any) in the time slot [T, T + 1), is stored in
the ring buffer of node m.

(b) if Q~(T) = Othe node does not transmit any
of the messages in its queue. If node m e 1
is transmitting a message with destination a
node other than m, node m is retransmitting

the same message in the same slot (therefore,
no message is stored in the ring buffer of
node m in this case).

At the time instant T at which Qm(T) = O for all m E M
and the ring buffers of all nodes are empty (i.e., all the
node quotas have been delivered to their destination), we

reset Qm(T) = Vm. In this case we say that node m is

“allocated new quota.”

Policy ~; is a synchronous version of the algorithm pro-
posed in [5]. The main difference is that in the distributed
algorithm of [5], node m resets its quota whenever it receives
a circulating token, while under n; all nodes reset Qi (T) at
the same time. The modification is introduced here to simplify

the analysis. Also, m; has similarities to the policy considered
in [12], which models the operation of the Orwell protocol
[6]. The main difference is that in [12] the round trip delay
is considered to be one slot, while in our model the round
tip delay is zero. Although there are also differences on the
order in which the nodes are given permission to transmit
on the ring, as will be explained shortly (see the remark after
Proposition 1), our results can be directly applied to the model

in [12]. Fhlly, we note that the distributed implementation of
policy n~ requires a mechanism that informs the nodes when
the quotas of all the nodes on the ring have reached their
destination. One such mechanism is provided in [6] using
the TRIAL and RESET slots. The implementation of this
mechanism will increase by two slots the “evacuation time”’
(for the definition see two paragraphs below) of the ring and
the results of this paper can be easily adapted to incorporate

thk increase.

The policy described above uses quotas that are integer
numbers. In the following we will be interested in policies
that allocate quotas according to predetermined ratios. Since
any ratios can be expressed either exactly or arbitrarily close
with integer numbers, integer quotas are sufficient for most
applications. However, if desired, T* can be easily modified

to accommodate any ratios (e.g., A : W). In this case vm
is interpreted as average quota and the policy is implemented
as follows. The kth quota allocated to node m is a random
variable, Um(k), that takes the values lvmj and LVm]+ 1 with

probabilities 1 – Vm + lvmJ and Vm – lvmJ respectively. The
random variables Vm(k), k = 1, . . . are i.i.d and independent
of the rest of the processes in the system. It is easy to see that
~vm(k) = Vm. Note that when integer quotas are allocated,
Vm(k) = Vm, that is, the modified policy reduces to ~;. For
the sake of generality, we will study the modified policy in
the following and we will also denote it by n;.

From the description of the algorithm we see that under ~;
the system operates in cycles. At the begiming of cycle k,
node m E M has quota Vm(k) and the end of the cycle, the
quotas of all nodes are zero and their ring buffers contain no
messages. Formally let &(T) be the number of messages in
the ring buffer of node m at time T . Let also To = 1 and
define for k ~ O,

Tk+l = min{T > Tk : Qm(T) = O,

fire(T) = O,m e M},

Qm(Tk+l) = vm(k + l), m c M.

Provided that there are no messages in the ring buffers at
time T = 1, the sequence {T~+l – Tk }~=o consists Of i.i.d
random variables. Using the terminology in [12] we will

caIl the random variable T, := T1 – To the “evacuation

time” of the ring. As we will see, the evacuation time is
crucial in determining the performance of ~; in terms of
node throughput. We derive next an expression for T,. Let

Kij be the number of messages originated from node i with
destination node j during T,. Letalso ~m be the number of
messages that are originated or have to be retransmitted by
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node m during T,. Clearly,

and

Nm. ~ ~ Kij. (4)
iCM j=m~l

Since at least one node is transmitting in each slot in the

interval [1, T~ + 1) and the quotas are finite, T= is also finite.
Also, since a node can transmit at most one message in each
slot, we have

(5)

The next pro~sition shows that equality holds in (5).
Proposition 1 Provided that Vi >0 for some i E &l,

Proofi We use induction on the number of nodes, M. For
M = 1, the proposition is clearly true. Assume its validity for
M and consider a ring with M + 1 nodes. Let Ta + 1 be the
first time at which we have Qi(Ta + 1) = O, Bi(Ta + 1) = O for
at least one node z E M (note that if Uj = O for some j E M,
then T. = O). Clearly, T. < T,. Letalso A be the set of nodes

i E M with the property Qi(~. + 1) = O,~i(Ta+ 1) = O. By
the definition of ~f, every node in &f is busy in the interval

[1,1’a + 1). Therefore, If A = M then T. = T. = Nm, rn E
M and the proposition is true. Assume now that A is a strict
subset of M and consider the operation of the ring after time
T. + 1. The actions taken by the nodes in M – A are the
same as the actions taken by the corresponding nodes in a
ring where the following modifications are made.

1)

2)

3)
4)

If ~i (T. + 1) = 1, the message in the ring buffer of

node i in the original ring is moved to the head of the
queue of node i in the modified ring. The rest of the
messages in node i in the modified ring are identical to
the messages in the queue of node i at time Ta + 1 in
the original ring.
The quota of node i E &t – A is Di := Qi(Ta + 1) +
@i(Ta + 1).
The ring buffer of node i ● M – A is empty.
If a node i E &f – A sends a message to a node .i c A,

in the modified system the same message is sent to the
first node in M – A that is downstream from j.

Denote by ~,, ~m, the quantities corresponding to T,,
Nm, in the modified ring. In both rings, in the interval
[T. +1, T.+ 1), the nodes in M - A are transmitting exactly
the same messages at the same time. Therefore, the cycles for
both rings will end at the same time and

Te=Te– Ta

From the definition of the modified ring and the fact that all
nodes in the original ring were busy in the interval [1, T. + 1),
it follows that

~m=Nn, –T.. m~M-A. (6)

72I

The modified ring contains at most M nodes and from the

induction hypothesis and (6) we have that

~, = ~cmMu_A~. = ~~NW_A N. – To.

Therefore,

which together with (5) shows the validity of the proposition
for M + 1. c1

Remark. In the model considered in [12], assume that the
slot starts from a specific point O on the ring and let T, be
the first time the slot reaches O and all nodes have completed
their quotas. Following essentially the same approach, it can
be shown that T, ~= max~c~ Nm + 1 and therefore, the
evacuation time, T,, of the ring studied in [12] can be

expressed as

?.=~E~N. +l– Y,

where O s Y ~ 1, is a random variable that expresses the time
it takes for the slot to travel from the node that last finish~
its quota to the point O. Since the asymptotic properties of T,
depend again on m~~~m N~, our analysis can be applied
to the model in [12] as well.

Since ET, < xieM (Vi + 1) < 00, using regenerative

arguments it is easy to establish that ~; E II. and that the
throughput of node i E &l is

Evi ui

‘i= E=E”
(7)

In the next section we will investigate the asymptotic

properties of this algorithm when either the quotas or the
number of nodes becomes large.

Limiting Behavior of the Algorithm

Node Throughput for Large Quotas We consider first the
asymptotic behavior of vi, i E M, when the quotas increase
proportionally. Let real numbers r, ~ O, i E M, be given.
To avoid the trivial case we assume that ~i > 0 for at least
one i E M. We set vi = ~ri, i E M,v ~ 1. Whenever

needed, to explicitly denote the dependence of a quantity on
V, say quantity X, we write X(v). We also denote by 1A

the indicator of the event A. The next proposition provides
the node throughputs when the quotas become large while
maintaining the proportions ~i, i E M.

Proposition 2 For all i E M,

Iim Vi(V) =
Ti

v-m

{
maxm6M XIEM ‘ja.iw

}“

Proof Recalling the definition of ~i(k) from Section 2,

we Cm W’fhe Kij = ~[~ ~ 1 {D, (&)aj}. uSh_Ig the indepen-
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denceof D~(/c), k = 1,. ... we have that

< ~im Kij(V)
—

“-+cm v

‘“r’J+ll{Dz(~)+}~k=l< Ti limV+ml LWz
= Taqij, a. f?.

Therefore, taking into account (4) and Proposition
that

(8)

1 we have

,im T.(v) {1Nm(v)
—=limmax —

V+w v u+m mCM v

= max

{}
x rjajm ,a. e., (9)

rnGM
j~M

where aim are as defined in (2). Since

“’y~x;m’+~—
iEM iEM

the process T. (v)/v, v ~ 1 is uniformly integrable, and we
conclude from (9) that

~im ET.(v)
—=max

{}
x l’jalm . (lo)

v+m u rn~M
j~M

Using finally (7) we have that

❑

Let us now see how Proposition 2 can be used in the design
of ring access policies. A design objective for such policies
is usually associated with an optimization problem in W. For
example, in ring networks with spatial reuse, fairness is the
main issue. The simplest optimization problem associated with

this criterion is to maximize the minimum node throughput in
the network

max min vm. (11)
v~M mEM

When preferential treatment of the nodes is desirable, the
slightly more general problem

v~
max min —, g~>O, mEM, (12)
VEM mEM gm

is appropriate. It is not difficult to see that the vector with
coordinates

solves the problem in (12). A stronger optimization problem
related to fairness and widely used in the literature is to find
the max%in optimal vector in W (see [3, Section 6.5.2] for
a description of the fairness properties of max-min optimal
vectors). The max-min optimal vector in W can be easily

determined by slightly modifying the algorithm in [3]. Both for
problem (11 ) and the max-min optimization, it is also easy to
solve the more general problem obtained by replacing Vm with
a reward f~ (vm ), where f~ (- ) is a non-decreasing function.

Depending on the application other criteria may be desirable.

However, one main characteristic of most of these problems
(including those mentioned before) is that the resulting optimal
point v* lies on the “upper” boundary of W, that is, for some

k E M, the equality ~3=M a~kv~ = 1 holds. Given such
a vector we can pick appropriate quotas so that r; provides
node throughputs arbitrarily close to v* = {v; ,. ... v~_l }.
To see this, let v’ = min{v~ : v; > O,i c M} and define
r; = v:/v*, z E M. Then, since ~j~M ajmr~u”< l,m E
M ~d ~j~~ ajkr~V* = 1, we have that

1
v* = . .

and therefore,

v: = (14)

According to Proposition 2 if we pick ri = r;, as v becomes
large, the vector of node throughputs induced by ~; converges
to the desired vector v*. Therefore, once the optimal vector
v* is determined, it is easy to design the desired policy. For
problem (12) as well as the max-min optimization problem,
v* can be computed very simply, while for other optimization
problems, v* can be computed by standard numerical pro-
cedures. The main disadvantage with this approach is that for
the determination of ri, knowledge of the statistical parameters

qij that determine the performance space is required. As such,
the approach can be useful in environments in which these

parameters do not change fast. Observe, however, that for
problem (12) no such knowledge of statistical parameters
is required. Indeed, in this case we can simply pick ra =

gi, ~ E M. Once ri, z c M, have been determined, the desired
optimal point can be approached arbitrarilyy close by increasing
v. In the next two sections we will examine the dependence

of the node throughputs on the quota.
Remark. In [8], it was shown that when sessions are

established, which corresponds to the case qij = Oor 1 in
our framework, the round robin scheduling policy is max-min
optimal. However, besides the fact that this policy cannot be
implemented in buffer insertion rings, if qi~ can take values
other than O or 1, it can be seen from simple examples that the
round robin policy does not solve even the weaker problem
(11).
Bounds on the Rate of Convergence for Large Quota In this
section we provide bounds on the rate of convergence to
the optimal point under policy r;, as the quotas increase
proportionally. Since larger quotas imply larger channel access
times, it is important to know whether the node throughput
approaches the optimal throughput quickly as the quotas
increase. The main result of this section is Theorem 1 which
states that the rate of convergence is exponentially fast when
there is one bottleneck node on the ring and of order 0(vl/2)
when the are at least two bottleneck nodes. Before considering



GEORGIADIS<Ial.: FAIR POLICIES IN RING NETWORKS

the technical details, we provide an outline of the basic
arguments that lead to this conclusion. Let rno be one of the
b%leneck nodes, that is,

E rj a jmO = max
m~~

]CM

Observe from (4) that

ENm = u ~ rjajm

jGM
(15)

and therefore, we can write for the limit values in Proposition

2for ieM,

On the other hand, the throughput of the system when vi = Tiv
is

r~v
Vi(W) =

E(rIIRXm<M{~m})’

Therefore, the loss in throughput is due to the fact

i.e., the average cycle is elongated since the message desti-
nations are random. However, when the quotas are becoming
large the law of large numbers takes effect and as a result, the

maximum of N~, m E A4, is attained at one of the bottleneck
nodes most of the time. If there is only one bottleneck node on

the ring the maximum will almost always be located at that
node, and the effect of randomness will disappear quickly.
However, when at least two bottleneck nodes exist, the effect
of randomness tends to persist for larger quotas since the
maximum may be attained at different bottleneck nodes at
different times.

For simplicity in the exposition, we assume in this seetion
that both v and ri, i ● M, are positive integers and therefore,
no randomization of the allocated quota is needed. We also

assume without loss of generality that node O is a bottleneck.

~t ~~rn(~) = ~fl=l (El{q(p) – l{ DJ(/)=k)). I-d also

ljrn(x) = suP(?~R { ‘z-lOgE (eeR’m)} k ‘he ‘ate ‘inc-
tion of Zjm. Denote by MO the set of bottleneck nodes and

M;= M–Mo
Theorem 1: When v and ri, i E M are positive integers,

0< v; – Vi(V)
—

v;

723

Proofi According to Proposition 2 the maximum
throughput achievable by node i is given by

The evacuation time can be written as follows,

T. = No + rnewc{Nm - IVo}.

Observe that since node O is a bottleneck,

l’i/V~.

Setting Am = Nm - No, we have for i E M.

0< V; – Vi(V)
—

v;

=1–
v;(ENo/v) + v;E(mwmcM{Am/v})

(16)

(17)

From (17) we see that to have bounds on the rate of conver-

gence of the throughput of node z to the maximal throughput
v:, it is sufficient to develop bounds on the expectation of
m~m~M {Am/v}. Let I’m be the number of messages with

destination node m that are transmitted during a cycle, that is,

‘m ‘= ~j~M ~f~l l{~j(l)=m]. Then, by definition

and therefore for m > 1,

&= ’&&’k. (18)

k=l k= 1

and therefore, we can write Am as follows (note that Uk = Uk
since ~k is integer),

A“ = Am – EA. – VT.

= ~(vk ‘“k) -~(Fk - EFk) -v.rn

k=l k= 1

= ~(EFk - Fk)- V’ym
k=l

= x (fjFjm(l)‘rju~).
jCM 1=1

(19)
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Denoting z+ = max{O, z}, and observing that AO = O and

Tm = 0, m E Mo, we have

(20)

(21)

where

Observe that for fixed j, m, E M, the variables ~jm (1),1 =
1, . . . are i.i.d. with zero mean and therefore,

(23)

Since

we have.

(24)

Since for fixed j, m, E M, the random variables ~jm(l), 1 =
1,.. . are i.i.d., using the Chemoff bound [4] we have

The theorem follows from (17), (22), (23), ( 24) and (26). •l
Since ym >0, m E M;, and ~jm is bounded, it CtUI be

seen that ljm(-ym/(riM)) >0. Therefore, when MO = {O},

that is when there is only one bottleneck node in the ring, the
convergence is exponentially fast. Otherwise, the upper bound
in Theorem 1 decreases as the square root of v. The following

example shows that the bound on the rate cannot be improved
in general when there is more than one bottleneck node in
the ring.

Example 1: Consider a ring with two nodes, qol = qlo =

q, 1 > q >0, and To = T-1= 1.In this case, both nodes are
bottleneck nodes. From (19) we have,

where El(1) = ~ol (1) + ~11 (1). Simple calculations show

that (E~~) 1’2 = (2q(l – q))li2 =: o. Now,

By the Central Limit Theorem,

()s(v):= ((mw)-1 ~nl(l)
r=l

converges in distribution to a normally distributed random
variable, W, with zero mean and variance 1. Since the function
~(z) = min {~, max(O, x)}, ~ > 0 is continuous and
bounded, we have that limv+m Ef(S(v)) = Ej(W) >0.
Since max{O, S(v)} Z ~(S(v)), for v large enough,

CT Ef(w)
E(max{O, A1/v}) = ~E(max{O, S(v)}) ~ ~~.

We conclude that for v large enough and i = 0,1,

?$ – ‘Vi(V) v~E(max {O, Al/v}) c
—, C>O.

v: = ri + v: E(max {O, Al/v}) z vi/z

Remark. To simplify the discussion we assumed that v and
ri, z E M, are positive integers. Of course, the case ri = O for
some i E M is trivial, since in thk case v? = vi(~) = O. In the
general case, that is, when v and r~, i E M, are nomegative
real numbers, the exposition is more complicated, however,
the essential steps are the same. The main difference is that in
the second equation in (19), the term ~~=1 uk – ~k may not

be zero. This term is due solely to the discrete nature of the
messages. The main effect is that when there is more than one
bottleneck node on the ring, an additional term appears in the
upper bound in Theorem 1 that is of order 0(1/v), Therefore,
this term does not alter the asymptotic behavior of the policy.

From the previous discussion we see that the quotas needed

to reach within a small percentage of the optimal node
throughput can be relatively large if there is more than one
bottleneck node in the ring. However there is another factor,
namely the number of nodes on the ring, M, that affects
favorably the quota size. Note that the maximum channel
access time is upper bounded by the sum of the quota allocated

to the nodes. Therefore, for rings with small number of
nodes, a proportional increase of the allocated quotas may be
acceptable. However, for rings with large number of nodes,
the same increase will result in much longer channel access
times in the worst case. However, as we will see in the next
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section, for rings with large number of nodes increasing the
allocated quotas may be unnecessary, since for a wide family
of message destination probabilities, small quotas can provide
node throughputs close to the optimal.

Limiting Behavior for Large Number of Nodes We now

consider the situation in which the number of nodes, A4,
&comes large, As in the previous section, when necessary, we

use the notation X( AI) to make the dependence of a quantity
X on Al explicit. It was found in [12] that when ~i = 1, i E M

and gij = l/A4, i,j E M, then lim.lf+~ Af/ET’, (Af) = 2.
For these parameters the maximum throughput of node i is

independent of i. We conclude that

Therefore, as the number of nodes increases, the throughput
of every node approaches the maximal throughput even with
quotas of one slot. We will investigate this property further
under general message destination probabilities and arbitrary

but fixed quotas.
According to Proposition 2, given r,, i E M, the maximal

throughput for node i is

In Section 4.1.1 we showed that the throughput of node z can
be arbitrarily close to v;, however, this can be achieved by

increasing the quotas (~i = r~v) of all nodes proportionally.
We will show next that for a wide class of message destination

probabilities, and as the number of nodes increases, there is no
need to increase the quotas in order to approach the optimal
node throughputs. We provide first an example that shows
that the result cannot hold under arbitrary message destination
probabilities.

Example 2: Consider a ring with M = 3K, K >1, ~i= 1.

~d for m = O.. ,K — 1, q3m,3n@1 = q < l,~3m,3~t92 =
1 – 9, q3m@l,3n,ez = q3~@z,s~@s = 1. In this case the ring

contains K identical non-interfering sub-rings. The evacuation
time takes only the values 1,2. Since T,. = 1 if and only
if all nodes with indices 3m, m = 0,. , ~, K – 1, transmit
to their neighbors, we have ET, = 2 – q~ and therefore,
lim,lf+m v2(A4) = limK-t=(2 – qK)-l = 1/2. The maximal
node throughputs under the specified quotas, are v;(M) =
1/(2 – q). i E M, and since O S g < 1, we see that in this
case the node throughput can be reduced by 50 percent relative
to the optimal node throughput if the quota remain small. I

Assume that we are given a sequence of real numbers
rZ, i = 0. 1,.... such that

which policy m; induces node throughputs arbitrarilyy close
to the maximal as the number of nodes increases. As in
the previous section, the issue is to identify conditions under
which ~(maxm~M ~m(~)) % maxm~M EN~(A4). While
the strong law of large numbers was in effect in that section,
as will be seen in the following, in the current situation the
main reason for the above approximation is that under the

appropriate condition on the message destination probabilities,

the variability of fV~ (A4) relative to max~<,~ EN~ (M) is

small.
Theorem 2: Let Supi Ti < cc and assume that when the

number of nodes in the ring is M, policy T; operates with
quota vi = r~. i E M. If for some 6>0,

lim
Mb

M+m
{

Af–1
maX~~M ~i.~ riairn (M)} =0’

vi(M)
—=1.

J:l= v: (M)

A few remarks before proceeding with the proof of this
theorem. When qij = I/M, z E M and ra (M) = 1, then

( ‘tf-1
rnaxmCM ~i=o aim (M)) = (M + 1)/2 and Theorem 2

holds. This’result was show: in [12] using different methods.
The question arises whether the condition on the destination
probabilities in Theorem 2 can be weakened. The next ex-
ample shows that the numerator Mb cannot be replaced with
(ln M)p. 8 < 1. Therefore, the condition in the theorem is
close to being necessary.

Example 3: LetNo denote the set of nonnegative integers,
Q > 0 and define Kbf = max{k E lNo : k1+”2kS M},
L., = lK&2~~ j. Pick M large enough so that K.t[ 22.
Let ~i = 1 and consider a ring with the following message

destination probabilities.

9(m–l)K., +z,m K,,i = q(m–1)~.,f+l.(m–l)~,if+l+l

1—— m=l, . .. Lh~. i= O,. K,ilil- 2,
i’

qmK~–l,mK.v =1. m=l, . . .. L~f.

qi-l,j = l,i = L,\f K&f . . . ..M.

The ring contains L,Yf identical non-interfering sub-rings and
it is easy to see that

where Im = mK.tf–l. Setting Y~, = l{ D,~_l, K~+, =mK,,f}.

m= l,... ,L.if, i = O. . . .. K.tf –2, we can write

K.,, –2

NIm=l+ ~ Yim.
I=(I

sup r, < m. Clearly, the random variables Yim, m = 1...~.L,~f, z =
i 0,...,Klf – 2, are i.i.d. and

When the number of nodes is M, let policy ~; operate with
quota 1)2 = r,, i E M. We will identify a class of message

destination probabilities, g,j (M). i,.j c M, M = 1,2,..., for ={Eaim(M)}=E’v’l(M)=l+ K’’’l-l
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which implies that

lim max
M-m m~il’i

Define now

z = ~Ml{,v,m=KM}, m= l...lflf.

Since m~~<m<L~ Zm = O if and only if NIfi < KM, m =

1,... , LM, ;tis easy to see that

E
( )

Zm = ~&f[l– (1 –21-KM)LM),
O<%~L~

Since Zm s NIm and limfif+~(l – 21-K~)L~ = O we
conclude that

1
—.
2

The proof of Theorem 2 is based on two lemmas and the
next theorem due to Rosenthal [9, Theorem 2.12.].

Theorem 3: [Rosenthal If {Yk, Fk, O ~ k ~ M – 1} is
a martingale and 2 ~ p < co, then there is a constant C
depending only on p such that

((

M–1

~ ~(X;13i-1) + EX2

p/2

EIY~-llP < CE o
i=l ))

Af-1

+ c ~ -!qxiyl
i=()

where X. = Yo, Xi = Yi – Yi_l, i ~ 1.

Let Gim = ~~=mel (Kij – EKij) and let mo(lf) k one
of the bottleneck nodes when the number of nodes is M. For
the rest of this section we assume without loss of generality
that mo(A4) = O.

Lemma I For p > 2 and for m E M there is a constant
Cm that depends only on p such that

where R := SUpi ri + 1.
Proof Observe that for fixed m the random variables

Gim, i E M, are independent (not identically distributed in
general) with zero mean. Therefore, for fixed m E M, the

process Yk := ~~=0 G’imj k = O,..., M – 1 is a martingale.

We will apply Theorem 3 with Yk = ~~=o Gim and
Fi = fiim, where 3im is the a-field generated by the random
variables Ghm, k = O, . . . , i. Since for fixed m the random
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variables Gim, i c M, are independent,

E(@ml~i-l,m

Observe now that
i

j=m@l

Since EIB,m(l) = a~m and the random variable vi is indepen-

dent of l~,m(l), 1 = 1,..., we conclude that

(2B;m(E(G~mlFi_l,m) <E vi

If ~i ~ 1, then by definition vi takes the values O or 1 and
therefore, Ev~ = E~i = ~i. If ri > 1, then again by definition,
Ev~ < ( lriJ + 1)2. Therefore, taking into account (28), we

have for general ~i,

E(G;ml~i–l,m) S z(~i + l)riaim < zRTi~im. (29)

Since lGim I < l~ij + 1 ~ R we have,

M-1

~ EIGimlP ~ MR’. (30)
i=O

From Theorem 3, (29) and (30) we conclude that for p Z 2

and for m E M there is a constant Cm that depends only on
p such that

+ C.M?R

•1
Let & := Nm – ENo. We are now in a position to prove

the following lemma.

Lemma 2 For any ~ >0, there is a constant ~ that depends
only on ~ and R, such that

‘1+6((~~{Er
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Proof: LetG., = ~,=,u Gim, and consider the event
pk = {maX,,, ●,w l~rr, I z k}. We can express F~ as the
union of the disjoint events Fkm = {1~~ I > k, IGJ I < k,.~ =
0,. .,?~-l}, rz=O, . . . .. Since Since l~~lzkontheset
Fkn, using Holder’s inequality and Lemma 1, we have for

Using the inequality

(31)

we have

Af–1

~ (Pr(pkn))=

?1=0 ‘M1’p[Epr(Fknl’-”p

—_ ~l/Ppr(Fk)l-l/P, (32)

From (31 ) and (32) it follows that

Since In,,, I < MR, using the inequality

and taking into account (33) we find that

(33)

Since ENo 2 EN,., m ● M, recalling (4) we have that

i,, < N,,, – E.Vrn= z ‘,,= ‘“ ’34)
1 GM

727

( )Using (34) and the fact that E rnaxmc.ti ~~ 2 EAo = O,

we have for p ~ 2,

For O < ~ s 2, the lemma follows by picking p = 4/; and

{ }{
k = C max (2 R)li2. R sup

1 + ln(A4R)

.!f ~ 1 }M~/2

For $>2, we can simply pick the constant C that corresponds
toi$ =2. •1

P~oof of Theorem 2: Write Tr = ENO +

rnaxm~M Am. since node O is a bottleneck node,

r2 rl
V;(M) =

(zg;l r,a,o(M) = “’”(M)

and therefore, the ratio of the throughput of node i E M to

the maximal throughput achievable under the specified T-, is

~~i(M) E~o(Jf) = ENO(M)— =
v;(M) ET,(M) ENo(flf) + E(max~,,w{~m(M)}) “

(35)
We see from (35) that

v,(M) E(nlaxm,M{~m(M)})
— = liff ~1~1= =0

L!I’mv;(M) ENO(M)
(36)

and therefore, it suffices to

(

show that

E max,.=,~ {& (M) }) becomes arbitrarily small relative

to EIVO(M) as M increases. In Lemma 2 pick ~ = 6/2.

Recalling that ENo (M ) = nmx~=,u {E
.1 f-1,=0 rzu,m (M)},

we then have,

-E(max~c,U ~,n(M))
O < lim

Af*= ENo(M)

=0

and the right hand side in (36) is true. ❑

V. CONCLUSIONS

We studied a slotted ring in which simultaneous transmis-

sions of messages by different stations is allowed. Under the
assumption that the stations have infinite access queues, we
described the space of achievable node throughput under
general transmission policies. Next, we studied a policy that is
based on the idea of allocating transmission quotas to the nodes
as described in [6] and [5]. While we considered a synchronous
version of the policy, there is a simple relation between the
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node throughputs of the policy studied in this paper and the
system studied in [12] which models the ring in [6]. This
relation permits us to apply our results to that system as well.
We conjecture that our results also hold for the asynchronous
version of the policy proposed in [5]. We do not have a
proof in this case, however, the following heuristic argument
can be given to support the conjecture. In the asynchronous
version, a node may start transmission of its new quota before

the upstream nodes complete the transmission of their quotas
from the previous cycle. On the other hand, when the same
node finishes its new quota, it cannot start new transmissions
until all the upstream nodes complete the transmission of their
quotas from the previous cycle. Therefore, we expect that the
net effect is as if the quotas of all nodes have been increased
proportionally, but not more than twice the original quota.
In fact, it is easy to establish that for given r~, i E M, the
node throughputs induced by the asynchronous version are
proportional to ri, as is the case with the policy studied in

this paper.
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