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Connection Establishment in High-Speed Networks
Israel Cidon, Senior Member, IEEE, lnder S. Gopal, Fellmt’, IEEE, and Adrian Segall, Fellow, IEEE

Abstract— Protocols for establishing, maintaining, and termi-
nating connections in packet-switched networks have been stud-
ied in tbe literature and numerous standards have been developed
to address this problem. In this paper, we reexamine connection
establishment in the context of a high-speed packet network,
introduce a protoeoi for connection establishmentltakedown that
is appropriate for such a network, and explain its advantages
over previously proposed protocols. The main features of the
proposed protocol are: Fast bandwidth reservation in order to
avoid as much as possible reservation conflicts, guaranteed release
of the reserved bandwidtb even under nodal and link failures, soft
recovery from processor failures which allows the maintenance of
existing connections under processor failure provided the switch
and links do not fail.

The underlying model that we use is the recently developed
PARIS/plaNET network, but the protocol can be adapted to other
fast packet networking architectures.

I.INTRODUCTION

T HE advent of fiber-optic media has pushed the trans-
mission speed of communication links to over a Gb/s,

representing at least a four-order-of-magnitude increase over
typical links in traditional networks. This has not been matched
by a corresponding increase in processing capacity of the
communication nodes. Thus, processing has become the bot-
tleneck in today’s communication systems. This has lead
to the development of dedicated hardware to perform very

fast packet switching [1 ]–[31. In traditional packet-switched
networks, the packet handling tasks are all performed by a
single general-purpose processor. In fast packet networks like
PARIS [2], plaNET [4]. and ATM [5]. there is a dedicated
hardware switch that has the ability to route packets without
involvement of a general-purpose processor. Specifically, a
network node consists of two parts (see Fig. I): the switching
subsystem (SS), which is a fast but relatively limited function
hardware switch, and the Network Control Unit (NCU), which
is a slower but more sophisticated processor. All packets
that must be relayed through the node travel directly through
the hardware in the SS. Only packets that require more
complex processing are forwarded to the NCU processor. The
assumption is that the time required for switching, that can
be handled through hardware, is several orders of magnitude
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Fig. 1. Node structure,

smaller than the time for processing, which requires the

capabilities of a general purpose processor,
It is shown in [6]–[9] that several commonly executed

control functions like topology maintenance, leader election,
and directory functions can be performed substantially faster
in this new network than in conventional packet-switched

networks (e.g., ARPANET). [n this paper, we show that similar
results can be obtained for call establishment. Protocols for
call establishment have been proposed in several papers and
standards documents (e.g. [ 10],[ 11]). Here, we construct a call
setup protocol that exploits the fast switching hardware and
can be used for call establishment with bandwidth reserva-
tion. Note that as we are performing packet switching, this
“reservation” is not a physical reservation of a time slot. It

consists simply of telling the relevant NCU’s that some of
their local link capacity [ 12] is being used. This information
is used by the NCU’S in determining their link loading in order
to perform the check described for subsequent calls. We will
briefly describe some of the key features of the protocol.

We assume that the call request arrives at a source with
a specified destination and bandwidth requirement [12]. Via
suitable topology and route determination algorithms. the NCU

at the source determines a route through the network for the
call and then employs the call setup protocol specified in this
paper to establish the call. While the main issue of this paper
is the call setup and bandwidth reservation mechanisms and
their properties, there is a strong relationship between these
mechanisms and the route computation/selection methods em-
ployed in the networks. This paper assumes that prior to the
call setup and bandwidth reservation attemp[, a complete route
is precalculated and is known at the call originating node.
In other words, we assume that the network employs .wurce

routing. In general source routing systems, a particular path
can be computed via a distributed network wide procedure
or alternatively can be computed locally using a topology
database which is updated and maintained distributively and
dynamically. Our setup/reservation mechanisms can be used
in both cases and do not assume a particular method of
the source route computation. In the plaNET network [4],
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the approach used is of a topology database that is updated
every time a topological change or a significant utilization
change occur in the network. The advantage of this approach
is complete and flexible control over the routing characteristics
[13], [14]. Using this approach, it is easy to apply various.,
constraints on the computed path (cost, delay, loss, security,
etc.) as well as complex policies (some users are not permitted
to cross certain links or areas). It is also easy to compute

alternate paths of certain qualities and relationships to the

primary paths, to apply priorities and preemption mechanisms,
etc. The advantage of such local route computations is that
they are inherently centralized and can take into account
at all times global inforrnatiori. Global information must
be maintained by appropriate information update protocols,
which can induce large overhead if one attempts to follow

too closely rapidly changing patterns. However, many of the
considered ptiameters like policy, cost, and security tend to

be static, and the others should be updated at a rate that
does not overload the network. Such features can probably be
mapped in a limited way to distributed computation methods;
however, it will be quite complex and much less flexible to
potential changes. For example, if there exist n types of users
and each type may use a different set of network resouties
or require different cost measures, one should develop a
dAributed method to compute n different shortest paths at
the same time. This may be too much, given a plausible
scenario that some user types are very rare. The disadvantage
of maintaining topology maps is usually the scalability to
large networks. Several solutions which involve clustering or
centralized/distributed approach combination appears in the lit-
erature [15]. As mentioned, the setup/reservation mechanisms
of this paper apply to both centralized and distributed source
route computation.

On the other hand, our algorithm is not suitable for the case
where the routing and reservation processes are combined and

performed hop-by-hop via local information. Such a possible
solution will be to forward the reservation request over the
“best” outgoing link and make the routing decision and
reservation at the same time. While such a method has some
advantages, e.g., bypass of blocked links, it has many disad-
vantages as well. The bandwidth reservation action captures
costly resources from the network. Therefore, reservations
done for a call which is eventually blocked is a pure waste
of bandwidth, which becomes significant if there are many
competing calls when the network is highly loaded. In such
cases, early rejection of calls that have very small chance

to be eventually admitted is a positive feature. Note that,
in the nonsource routing case, there are two options: use a
topology/utilization database to compute the best next path
(such as in the ARPA network [ 16]), or the route can be defined
via a local exchange Bellman/Ford type of algorithm [16]. The
pros and cons of the two options have been already discussed.

We return now to the call establishment protocol introduced

in this paper. The protocol first performs, along the path, a
“resemation” of capacity for the call being established. This

reservation essentially informs every NCU alorig the path to
set aside the desired capacity for this call. It then performs a
“verification” by checking that all NCU’S on the path have

had enough free resources to reserve the capacity for this
call. The verification stage is necessary because every route
deterrhination protocol is subject to delays, during which
some of the links of the route may become congested. Only
if the answer of the verification is affirmative is the call
established and exchange of information packets commenced.
If the answer is negative, the call must be denied (and
potentially reattempted) as no bandwidth is available over the

requested route. The protocol ensures that all intermediate
nodes have the correct information and that no resource

deadlock exists. For example, when a call is not completed,
say because of inadequate capacity on some link, the call
is disconnected, or a failure is encountered, the bandwidth
reservation for that call is removed from the relevant NCU’s.

A key feature of the protocol is the fact that the bandwidth

reservation is performed very fast, thereby reducing its suscep-
tibility to umecessary call blocking. A commonly encountered

situation in heavily loaded reservation-based systems is a
resource contention, whereby several call attempts are made
at the same time. Each call is able to reserve some but not
all of its required links, causing every call to be blocked even
though there is enough capacity in the network to satisfy a
subset of the calls. A possible solution to this problem is a
centralized bandwidth management approach, together with
the usual drawbacks of centralized systems. The approach
that we take here is to make the reservation stage as fast
as possible, reducing the possibility of contention but not

eliminating it completely (note that the critical parameter
here is rapid reservation and not fast connection setup). It
is easy to realize that if the reservation period is made
very short, the probability that another independent call will

attempt to “grab” a common resource during the same time
will become very small. The reservation period is, thus, the

potential conflict period similar to the effect of the signal
propagation delay in CSMA [17] systems. In particular, we

do not require the NCU’S to relay ~e reservation message.
Instead, we use the hardware routing capabilities to ensure
that the message is delivered to every intermediate NCU at a
maximum speed. Another important parameter is the frequency
of utilization updates, since outdated information may increase
the probability of blocking. This issue has to be addressed by
the designers of the update protocols.

There are also some critical timing issues in the interplay
between reservation and data transmission. It is important that
both ends begin data transmission only ajler all intermediate
NCU’S have performed the reservation and terminate data

transmission before any NCU on the path releases the reserva-
tion. Otherwise, transmission conflicts with other connections
may cause excessive congestion and, hence, information loss.
In addition, since information packets travel only through
the switching subsystems, failure of an NCU after call es-
tablishment should not normally trigger call cancellation.
However, this means that in order to avoid congestion due

to overutilizatioh of the capacity, the NCU must learn after
recovery about the existence of all calls traversing it before
permitting new calls to be established. It is shown formally
that the protocol developed in this paper satisfies the important
timing and exception requirements.
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Another important contribution of the paper is the design of

the capacity check process. The period of the capacity check
dictates the delay between the reservation and the information
transmission in case the check result is positive, and the delay
between the reservation and the resource release in case the
check result is negative. This basically dictates the reservation
“overhead,” i.e., the length of the time period in which the
common resource is “locked” but not used. A sequential
capacity check (hop-by-hop along the call path) would require
time that is proportional to the number of nodes along the
path. By making use of the hardware routing capabilities, we

are able to reduce this to a time that is proportional only to

the logarithm of the number of nodes in the path.
To illustrate the potential speedup in reservation time, we

present a typical numerical example. In networks such as SNA
and TCP/IP, a switched setup or control packet will typically
incur thousands of instructions. In addition to the processing
itself, such a message may be queued before it is processed
(in addition to the queueing delays over the links). Therefore,

a typical processing and queueing delay value can be of
several milliseconds. Assuming a 5 ms delay, a five-hop route

results in an average processing and queueing delay of 25 ms.
Switching, transmission, and link queueing delays for control
packets are considerably shorter in high-speed networks. If we
assume a 1 Gb/s link and 1,000 bits/packet (a very large value
for a control packet), we get a transmission delay of 10-6
seconds per node. Even under a heavy load assumption, as

control packets usually travel with high priority, processing
will be at least three orders of magnitude higher. Propagation

delay varies because of the different distances between users.
In most cases, it will also dominate switching transmission
and link queueing. For a 10 km path, it is usually assumed to
be on the order of 0.05 ms: for a 5,000 km path around 25
ms. This means that for coast-to-coast calls, our improvement
in reservation time will be only by a factor of 2 but, for local
and medium distance calls (which are prevalent in wide-area

networks) the gain is of 2-3 orders of magnitude. We stress
again that these calculations refer to the reservation time and
not to the total call setup time.

The paper is structured in the following fashion. In the
next section, we describe the model, the assumptions, and
the requirements. In Section 111, we describe the basic call
setup protocol, motivate the design choices, and justify them.
In Section IV, we formally state and prove the correctness
of the protocol. In Section V, we describe the logarithmic
capacity check and show how it can be used to improve the
basic protocol.

II. THE MODEL

Each node in the communication network consists of high-
speed switching hardware [Switching Subsystem (SS)], which
is attached to the communication links, and a single processor
[Network Control Unit (NCU)] (see Fig. 1). As mentioned,
the switching functions that can be performed in the SS are
much faster than functions that require the involvement of
the NCU. However, as the SS is a dedicated special-purpose
hardware structure, it is not flexible enough to petiorm higher-

Fig. 2. Automaticnetworkrou[ing,

Fig, 3. ANR with selective copy,

level functions and is limited to simple and mainly pipelined
intermediate routing functions.

The routing of control information is performed using
Automatic Network Routing (ANR), sometimes called source

routing (note: other routing modes are also supported in
various systems such as label swapping and multicast [4];

however, they require a setup phase for their operation and,
consequently, are not suitable for the setup phase itself). Each
link has an ID assigned to it that is unique within the SS, and
the NCU is assigned ID = O in each SS. A link may have
different ID’s at each of its end points. To illustrate the ANR
mechanism, assume that a NCU in a certain node wishes to
send a packet to an NCU in a certain destination node. It

computes a suitable path to that destination node and prefixes
the data with a string that is composed of the concatenation
of all the link ID’s along the computed path. The message
travels through the SS’s along the predetermined route to the
specified NCU. As part of the ANR mechanism we allow the
possibility of selected copy to the NCU (see Fig. 3). This is
done by adjoining to each of the ID’s in the prefix an additional
bit, the copy bit. If this bit is set, the packet is copied to the
NCU in addition to being forwarded on the appropriate link.

Two types of control messages are used in the protocol

described in this paper. One type is similar to an end-to-
end information message. These messages employ the ANR
technique and propagate end to end through the switching
subsystems only, possibly being copied by the NCU’S along
the path. We shall refer to this type of message as a transmitted
message. Control messages of the second type are exchanged
between neighboring NCU’S. We shall refer to this type of
message as a sent message. Between every pair of neigh-

boring NCU’S, there is a Data Link Control (DLC) protocol
that ensures data reliability [18] so that sent messages are
guaranteed to arrive correctly unless the link or the NCU
fails. Transmitted messages are not protected by a DLC and,
therefore, are not guaranteed to arrive. They may be lost
because of congestion in the queues. However, we assume
that the buffers in the queue at the NCU are large enough
to accommodate all copied messages so that there is no loss
of a message that has been copied from the SS to the NCU.
Moreover, we shall assume that there is a time interval 7“, such
that if a transmitted message for which the protocol dictates
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immediate acknowledgment is not acknowledged within T’;
either the message or the acknowledgment was lost. Another
assumption used in the paper is that there is an integer KS such
that at least one round-trip transmission (message + ACK)

out of ~, consecutive transmission trials does arrive correctly
with very high probability. The value of K, depends on the

packet loss probability in the network. For example, analysis
for the PARIS system shows a packet loss probability of less
than 10–6 per node [19]. (Note: In fast packet switching or
ATM, the main source for packet loss is buffer congestion.)
All information packets are transmitted and, hence, their
propagation time is also bounded by T’. The timers at all
NCU’S are set to some interval T, where T z T’. (We assume
that the same value of T is used by all NCU’S; however, it is
easy to accommodate small differences in the timer values.)

Call ID’s are assumed to be unique networkwide, and all
messages related to the same call contain this ID.

This model corresponds to the PARIS/plaNET architecture
[4]. Our protocol can, however, be adapted to other architec-
tures like ATM [5]. The relevant layers in the ATM architecture
are the ATM layer, AAL (ATM adaptation layer), and the
DLC and network layers. Since the switch handles ATM cells,
the actions required from the SS in PARIS/plaNET cannot be
performed by the ATM switch itself and will have to be done
just before the AAL layer. Still, a significant speedup of the
reservation process can be achieved compared to protocols that
would require the SETUP message to go all the way up to the
network layer.

III. THE CALL SETUP ALGORITHM

A. Informal Description

We start by first describing the operation of the protocol
when there are no failures on the call path (see Fig. 4). We
will then describe how to deal with NCU and link failures that
occur during setup or normal operation. We will focus on a
particular call and assume that all messages that correspond
to a certain call carry a unique identifier which is associated
with any call. (The source node which originates the call is
responsible for assigning this identifier.)

In normal operation (after the call was initiated and before
it is taken down), the source node transmits every T seconds

to the destination node a REFRESH message < A.7.6> 1 that
is acknowledged by the destination with an ACK message

<C.4>. The REFRESH’s and ACK’S are copied to the NCU’S
and serve to inform the source node that the call path and
destination node are operative and inform the intermediate
NCU’S that the call is up at the source and destination. Recall
that the variable K, indicates that, out of K, consecutive
transmissions, at least one round-trip transmission is successful
with high probability if the links are up. If the timer at the

source expires K, + 1 times without receiving an ACK, the
source assumes that the path or destination is inoperative and
drops the call <A.7.3> (if the timers at different nodes run at
slightly different rates, more than K,+ 1 timer expirations will
be required). If the timer at the destination expires Ks +2 times

1 The notation <> points to the respective line in Section III–B–2.
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Fig. 4. Setup/takedown example.

without receiving a REFRESH, the destination drops the call

<C’.8.7>. If the timer at an intermediate NCU expires K,+ 4
times without the NCU receiving an ACK or REFRESH, the
NCU drops the call. These values have been selected to ensure

that the source and destination drop the call at a sufficient time
before intermediate NCU’S, so that information packets cannot
arrive at any NCU after the time the latter drops the call and
releases the reserved capacity for that call. In this way, we

guarantee the required properties as stated in Section 1.
The setup of a call uses two types of control messages:

SETUP and COMMIT. The SETUP message is identical to
the REFRESH message, except that it is transmitted only

before the source receives the first acknowledgment. When

an intermediate NCU receives a SETUP for the first time for
a call, it checks whether there is enough residual capacity
to handle the call and reserves the required capacity if the
answer is positive < B. 1.6>. The destination NCU uses a
similar algorithm except that, instead of checking the residual
capacity on the forward link, it checks whether the end user

is available. In addition, as with the REFRESH message,

every SETUP message is acknowledged by the destination
NCU by transmitting an ACK to the source. When the timer

expires, the source retransmits a SETUP message unless it
had already received at least one ACK. After having received

the first ACK, it sends (recall the difference between send
and transmit) COMMIT and starts transmitting REFRESH at
timer intervals as explained before. The purpose of the SETUP
message is to inform the NCU’s on the path of the attempt

to establish the call ana to have them reserve the capacity.

Since transmitted messages propagate quickly, the SETUP
ensures fast reservation, thereby minimizing the probability of
conflicts. In addition, it ensures maximum pwallelism in the
distributed process of checking for sufficient residual capacity

over the entire path.
The source sends a COMMIT message immediately after

receiving the first ACK. The purpose of the COMMIT is
to find out whether all NCU’S have indeed been able to
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reserve the capacity for the call. When it receives a COMMIT
message, if capacity is reserved, an intermediate NCU sends
a COMMIT message to the next NCU. Otherwise, it sends
an ABORT message and the latter is propagated on the path
< B .2.6>. Both COMMIT and ABORT are sem messages,
i.e., they propagate hop-by-hop using error detection and
retransmission, thus ensuring reliable communication. If every

NCU on the path has reserved the capacity for the call, the

destination will receive COMMIT; otherwise, it will eventually
receive ABORT. Note that while there may be several SETUP
messages transmitted. for a given call there is exactly one
COMMIT/ABORT chain.

For the purpose of our description, we shall say that the
NCU is in up state for a call when the setup procedure is

completed as far as the NCU is concerned. After receiving

SETUP, an NCU is in an intermediate state called pending.
While in pendincq. the variable resen’ed indicates whether the

capacity has been reserved for that call or not. In up state, the
wsen’ed variable is always yes. It will also be convenient to
indicate by a special state the situation when an NCU knows
nothing about a call. For this case, we distinguish between
the destination and intermediate NCU’s on one hand and the
source NCU on the other. When the destination or intermediate

NCU knows nothing about a call, we shall say that the call
is in the none.vi.sren( state at the NCU. This can happen if

the initialization procedure had not been started as far as the
NCU knows, if the call had been cancelled at that NCU or,

by definition, if the NCLJ is nonoperational. If the call had
not been initialized yet. the source NCU is said to be in the
tunic.ristent state for that call. After leaving nonexistent state,

the call cannot return to this state at the source. Rather, if
the call is cancelled or the source NCU fails, we say that the

call enters the ,$ni.shed state. Afterwards, by definition, the call
stays in the finished state forever. The reason for this state is to

ensure that the identifier of a call is never reused. In practice,
the identifier may be reused a sufficiently long time after the
corresponding call entered the finished state.

As said hefore. the destination transmits ACK in response
to every SETUP or REFRESH. There are three types of ACK
messages. depending on the current state of the destination.
If the destination is in the up state, i.e.. after having received
COMMIT, it uses ACK(accept). If the destination is in the

pending state. i.e., after the SETUP but before the COM-

MIT/ABORT, and has reserved the capacity for the call, it

uses ACK( unknown). If the state is pending, but the check
for capacity and user availability turned out negative or if
at any time the destination wishes to take down the call, it
uses ACK(reject). An ACK(reject) need not be copied to the
intermediate NCU’S because, if it does arrive at the source,
it will cause the drop of the call. The other two types are
copied and used as described earlier. In addition, ACK(accept)
is used to bring the intermediate NCU to state up. When the
source receives the first ACK(accept), it makes a transition to

the up state and can start transmitting data messages to the
destination. If it receives an ACK(reject) or wishes to take
down the call. it drops the call and transmits a TAKEDOWN
message, to which the destination responds with a T-ACK.
The latter is copied to every NCU and causes it to drop the

call. The TAKEDOWN T-ACK pair is used only to accelerate
the release of the reserved capacity; ~, + 4 periods later, the
intermediate NCU’S and the destination would have dropped
the call even without the TAKEDOWN. (Note that, at that
time, call identifiers may be reused but we omit this function

to facilitate the explanation.)

Until now, we have considered no topological changes. [n

the following, we shall describe the extensions to the protocol
to handle link and NCU failures and recoveries. Since for
sent messages we do not have a bound on the delay in the
NCU, the COMMIT chain propagation cannot be protected
by a timeout. Consequently, a source that receives messages
of ACK(unknown) must wait until it receives a message of
ACK(accept) or ACK(reject) in order to decide upon the fate

of the call. This will happen only after COMMIT/ABORT
reaches the destination. In order to avoid an indefinite wait in

the case of a link or NCU failure that blocks the propagation
of the COMMIT/ABORT, we use the fact that if a message
is sent between neighboring NCU’S, the DLC ensures that
(in finite time) either the message is received correctly or
a failure is detected. When it detects a failure, an NCU in
the pending state sends back a CNCL message. Similarly,
when the COMMIT/ABORT chain reaches an NCU whose

forward link or NCU is nonoperational, the NCU sends back

a CNCL message. The purpose of the CNCL message is to

ensure that the source will drop the call in the case when the
COMMIT/ABORT chain is interrupted. The CNCL is sent on
the reverse path until it reaches the source or a failed link,
a failed NCU, or an NCU in the up state. If it reaches the
source, the latter drops the call and transmits TAKEDOWN.
If it reaches another failure, then it is discarded but the NCU on
the other side of the failure must have initiated, or will initiate,

another CNCL. The situation when it reaches an NCU in the
14p state is when the CNCL is sent by an NCU in the pending

state, is delayed in the queue at the sending NCU, and by the

time it reaches the next NCU backward an ACK(accept) had
traversed the link connecting the switching systems of the two
NCU’S. However, this means that the destination was in the
up state, so the COMMIT chain was not interrupted and has
reached the destination. Consequently, the CNCL chain can be
terminated at an NCU in the I(p state. Because of this situation,
intermediate NCU’s do not drop the call upon receiving CNCL
since they are not sure that the call will indeed be dropped at

the source. If intermediate NCU’S would have dropped the call
upon receiving CNCL, then the property that a link is never
used beyond its capacity (Lemma 7 ) might have been violated.

The last problem to be solved is that of NCU’s that recover
from failures. Note that, in our model, an NCU failure does
not imply the failure of its adjacent links, thus calls that have
already been established should not be disrupted. However,
in a failure, the NCU may lose its memory including the
information regarding existing calls and the residual capacity
on its links, In order to prevent link overutilization that

may cause excessive packet loss, the recovered NCU cannot
accept new calls until it restores this information. The way to
accomplish this is to require the recovering NCU to enter an
e.rceprion mode, where it records information about existing
traversing cal Is from copied ACK messages but does not allow
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new calls to be set through it, The duration of the exception
mode is K. intervals, where K. = K. + 4 (the algorithm is

correct for any K. z K, + 4, but the exception mode should
obviously be made as short as possible). The operation of the
intermediate NCU in exception mode is as follows. Blocking
of new calls in exception mode is done by setting reserved
= no if SETUP or COMMIT arrives and by transforming any
COMMIT chain into an ABORT chain <B. 1.4>, <B.2.6>. If
an ACK(accept) arrives for a call, this means that the call is up
at the destination NCU and the COMMIT chain had succeeded
for this call in the past. In this case, the state is set to up and

reserved to yes. Receipt of a REFRESH or ACK(unknown) in
exception mode puts the NCU in an ambiguous situation, so
that reserved can be set neither to yes norno. It cannot be set
to yes because this may be a call for which COMMIT has not
been received yet, and in exception mode the NCU does not
know if it has enough free capacity for it. It cannot be set to
no because the COMMIT may have traversed the NCU before
the failure, but may not have yet reached the destination NCU.
In this case, if the COMMIT chain is very slow and the NCU
leaves exception mode in the interim, it may accept new calls
without taking into account the load of the considered call. The
solution is to set the reserved variable to a third value maybe,
whose meaning is that the call should be taken into account in

terms of load, but the COMMIT should be transformed into
ABORT if it apives later.

An exception period is defined at the destination as well, in
order to ensure that all calls that had existed before the failure
will be dropped by the source. No ACK’s are transmitted in
this period.

As a final remark, we note that if a link failure occurs, the
adjacent NCU retains all calls that traverse that link until they
are dropped by the regular timeout mechanism. This ensures
that no congestion occurs if the link comes up and the failure
was not detected by one of the end points.

B. Formal description

1) Variables and Messages

Variables at source NCU
per adjacent link

used-capacity = total capacity of calls
in pending or up

per call
state = nonexistent, pending, up, finished

per call, for calls in pending or up
counter = O 12 K,, , ,. ...
timer = starts when state - pending,

expires every T seconds
capacity-available = true if for the forward

link and the given call, link-capacity
minus used-capacity > new call capacity

drop = yes, no
flag = setup, finish

Variables at inpmnediate NCU’S
node variables (common to all calls)

mode = exception, normal
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exception-counter = 0,1,2,..,K.
per adjacent link

used-capacity = total capacity of calls in
pending or up with reserved = yes or

maybe traversing the link.
per call

state = nonexistent, pending, up
per call, for calls in pending or up

reserved = yes, no, maybe
counter = O,1,2,...,K, + 4

timer = starts when state t pending, expires

every T seconds
capacity-available = true if on hth backward

and forward links, link-capacity minus
used-capacity > call capacity

Variables at destination NCU

node variables (common to all calls)
mode = exception, normal

exception-counter = O,1,2,..,K.
per adjacent link

used-capacity = total
capacity of calls in

pending or up with reserved = yes
or maybe traversing the link.

per call
state = nonexistent, pending, up

per call, for calls in pending or up
reserved = yes, no, maybe
counter = 0,1,2,...,K8 + 2
timer = starts when state + pending, expires

every T seconds
capacity-available = true if on backward link,

link-capacity minus
used-capacity > call capacity

user-reachable = true if end user is reachable

Transmitted messages copied to the NCU
ACK(unknown)
ACK(accept)
T-ACK
SETUP
RE~SH

Transxpitted messages not copied to NCU
ACK(reject)
TAKEDOWN

Sent messages

COMMIT
ABORT
CNCL

2) The Algorithm

SOURCE - mode = normal, algorithm per call

A. 1 crdl initialization ( only in nonexistent,
when cqpacity-avadable and when

link/NCU forward is operational)
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A.1.l

A.I.2
A.I.3
A.I.3
A.I.4

A.1.5
A,?

A.2. 1
A2.2

A.2.3
A.2.4
A.2.5
A.2.6
A.2.7

A.2.8

A.3

A.3.l
A.4

A.4. 1
A.5
A,5. I

A.6

A.6. 1

counter - I

transmit SETUP

state t pending

counter - 1

flag t setup

drop + no

receives ACK(type)

/*state # nonexistent, finished*/

counter -0

if type = reject, then drop - yes

if drop = no, then

if flag = setup, then
flag - refresh
send COMMIT forward

if type = accept, then

state e up

receives CNCL
if state = pending, then drop - yes

takedown initialized
( only in state pending or up )

drop * yes
link/NCU forward fails

if state=pending, then drop +- yes

receives T-ACK

disregard

SOURCE - node algorithm

A.7
A.7. 1
A.7.2
A.7.3

A.7.4

A.7.5

A.7.6
A.7.7
A.7.8

A.8
A.8. I

A.9
A.9. 1

A.1O

timer expires
if state = pending or up, do

counter - counter + 1
if counter = K, + 1, then

drop +- yes
if drop = no, then

if flag =setup, then
transmit SETUP

else, transmit REFRESH
else,

transmit TAKEDOWN
state +- finished

NCU comes up
if comes up for the first time, then

for all calls,
state +- nonexistent

NCU fails
for calls in pending or up, do

state t finished

data is transmitted only in state = up

INTERMEDIATE NCU- algorithm per call

B.1 receives SETUP
B.1.l counter - 0
B.1.2 if state = nonexistent, then
B.I.3 state - pending
B.I.4 if mode = exception,then

reserved +- no

B.I.5 else.

B.1.6

B.1.7
B.2

B.2. 1
13.2.2

B.2.3

B.2.3a
B.2.4
B.2.5

B.2.6
B.2.7

B.2.8

B.2.9
B.3
B.3.1
B.3.2

B.3.3

B.3.4

B.3.5
B.4
B.4. 1

B.4.2
B.5
B.5. I

B.6

B.6.1
B.6.2

B.6.3

if capacity-available, then
reserved t- yes

else, reserved - no
receives COMMIT or ABORT

/“ state # up”l

if state # nonexistent, then
if link/NCU-forward is

operational, then
if mode = normal and
received COMMIT and
reserved = yes, then

send COMMIT forward
else,

reserved - no

send ABORT forward
else,

reserved t no
send CNCL backward

receives ACK(type) /* type # reject*/
counter + O
if state = nonexistent, then

/“ mode = exception”/
state +- pending
reserved t- maybe

if state = pending and
type = accept, then

state - up, reserved + yes

receives CNCL or link/NCU-forward fails
if link/NCU-backward is operational

and state = pending, then
send CNCL backward

receives T-ACK
state t- nonexistent

receives REFRESH

counter t O
if state = nonexistent, then

/*mode = exceptional
state - pending, reserved + maybe

INTERMEDIATE NCU - node algorithm
(global to all calls)

B.7 timer expires
B.7. I if mode = exception, then

B,7.2 exception-counter +
exception-counter + 1

B.7.3 if exception-counter = K@, then
mode +- normal

B.7.5 for all calls with
state = pending or up, do

B.7.6 counter t- counter + I

B.7.7 if counter = K. + 4 , then

B.7.8 state -nonexistent

B.8 NCU comes up

B.8. 1 mode - exception
B.8.2 exception-counter +- O
B.9 NCU fails
B.9. 1 for all calls with
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state = pending or up, do
state - nonexistent

DESTINATION-mode = normal, algorithm per call

c. 1 receives SETUP
C.1.l if state = nonexistent, then
C.1.2 state +- pending
C.1.3 if user-reachable and

capacit y-available,then

reserved t yes

C<l.4 else, reserved + no
C.1.5 if state = pending, then
C.1.6 if reserved = yes, then

transmit ACK(unknown)
C.I.7 else, transmit ACK(reject)
C.1.8 else, transmit ACK(accept)
C.1.9 counter t O

C.2 receives ABORT /*state # up*/

C.2. 1 if state = pending, then

C.2.2 reserved t no
C.3 receives COMMIT /*state # up*/

C.3. 1 if state = pending and

reserved = yes, then
C.3.2 state t up
C.4 receives REFRESH* /*state #nonexistent*/
C.4. 1 if state = pending, then

C.4.2 if reserved = yes, then

transmit ACK(unknown)
C.4.3 else, transmit ACK(reject)

C.4.4 else, transmit ACK(accept)
C.4.5 counter h O
C.5 takedown initialized

(only in pending or up)

C.5. 1 state t pending
C.5.2 reserved + no
C.6 receives TAKEDOWN
C.6. 1 state t nonexistent, transmit T-ACK

DESTINATION - mode = exception
algorithm per call

C.7 ignore all messages

DESTINATION - node algorithm
(global to all ctdls)

C.8 timer expires
C.8.1 if mode = exception, then

C.8.2 exception-counter +-
exception-counter + 1

C.8.3 if exception-counter = K,, then
mode + normal

C.8.4 else, for all calls with
state = pending or up, do

C.8.5 counter - counter + 1

C.8.6 if counter = K, + 2, then

C.8.7 state t nonexistent

C.9 NCU comes up

C.9. 1 mode - exception

C.9.2 exception-counter - 0

C.lo NCU fails

C.1o.1 for calls in pending or up, do
state t nonexistent

C.11 data is transmitted only in state = up

IV. PROOF OF CORRECTNESS

In this section, we prove that the call setup protocol pre-

sented in Section III-B operates correctly despite an arbitrary
sequence of NCU failures, link failures, or message corruption.
Recall that we say that SETUP, REFRESH, TAKEDOWN
and all ACK’s are transmitted messages, while COMMIT,
ABORT, and CNCL are sent messages. Also, recall that we
assume that after a control message is transmitted by the
source, its corresponding ACK arrives at the source within
T seconds or the message or ACK is lost.

Lemma 1: General properties
Suppose that the source starts a call initialization <A. 1>

at time O, say. Then,

1. At the source NCU, a call may leave nonexistent state
only once. It enters pending state, then possibly up state
and then finished state. After entering finished state, it
never leaves it.

2. It will transmit at most K, – 1 SETUP’s, followed
by O or more REFRESH’s, followed by at most one
TAKEDOWN, at times O,T, 2T, 3T, .. .. An ACK is
transmitted by the destination NCU only upon receipt of
a SETUP or REFRESH. A T-ACK is transmitted by the
destination NCU only upon receipt of the TAKEDOWN.
If an operational intermediate NCU does not receive the
SETUP, then no NCU following it can receive it either
and no ACK is transmitted. If an ACK or T-ACK is not
received by an operational intermediate NCU, it is not
received by any NCU preceding it.

3. At the destination NCU, a call may leave nonexistent
state only once. It may enter nonexistent state after

having been in pending or up state only once. This
happens if it is dropped, due to timer < C.8.7 >,
TAKEDOWN < C’.6. 1>, or when the NCU fails <
C. 10>. After that time, it never leaves nonexistent state
again.

4. If an intermediate NCU drops the call because of timer

<13.7.8> at time t, then the call is in finished state at
the source NCU at time t – 2T and forever thereafter
and the destination NCU is in nonexistent state for that
call at time t – T and forever thereafter.

5. At an intermediate NCU, a call may enter nonexistent
state after having been in pending or up state if it is
dropped, due to timer <B.7.8>, T-ACK <13.5.1>, or
when the NCU fails <B.9. 1 >. If it is dropped, it never
leaves nonexistent state again. If it enters nonexistent

state when the NCU fails, it may leave it again and

reenter pending state.
6. There is exactly one COMMIT/ABORT chain per call. h

starts at the source node and ends either at the destination
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node or at an NCU with link-forward or NCU-forward
down.

7. All claims in the algorithm are correct.

Proof: The source NCU algorithm never allows it to
leave finished state once entered for a given call [hence,

a)]. Part b) is obvious from the algorithm. Next, we prove
c). In order to leave nonexistent state, the destination NCU
must receive a SETUP message in normal mode. We want
to show that, if at time I the destination enters nonexistent
state after it had been in pending or up, it will never receive
a SETUP message after I for that call while in normal
mode and, in fact, it will never receive in normal mode any

control message transmitted by the source for that call. If at
time t the destination receives TAKEDOWN, then [by b)]

after it has transmitted the TAKEDOWN, the source never
transmits any message for this call. Consequently, because
of FIFO on the source/destination path, the destination will
never receive another message transmitted by the source
(note that COMMIT and ABORT may arrive, but those are
not transmitted messages). Next, consider the case when at
time t, a failure at the destination causes the call to enter
nonexistent state (from pending or up). Upon recovery, the

destination enters exception mode, where it stays for KCT

and does not react to messages < C’.7>. Therefore, at least
between t + T and t + K, T, the source receives no ACK
messages. Since the destination NCU is in pending or up
before t, the source has also been in these states at some
point before t. Also, since K, – 1 > K., the timer expires
at the source < .4.7.3 > at the latest at time t + K,T.
provided that the source has not already entered finished
state before. Hence, if the source is not in state finished

already, it will transmit to this site no later than t + K.T.

Therefore, the last possible control message belonging to
this call is transmitted by the source at time t + K,T.

Consequently, the destination cannot receive any such message
after / + (K, + 1)T, which is before t + K(T, the earliest
time when the destination may be in normal mode. Finally,
consider the case when at time I the destination NCU enters
nonexistent state from pending or up due to the timer <
C’.8.7 >. This means that during (1 – (K,, + 2), t), the
destination has received no SETUP’s or REFRESH’s and
has transmitted no ACK’S. Consequently, at least during
(t – (K. + 1)7’, t), the source has received no ACK’S. Hence,

the timer at the source expires < A .7.3> at the latest at
time t – T. if the source had not already entered state =
finished. Therefore, the last possible control message belong-
ing to this call is transmitted by the source at time t – T.

Consequently, the destination cannot receive any such message
after time t.

To prove d), note that if an intermediate NCU drops the
call in < B.7.8 > at time t, then it receives no ACK and
no REFRESH or SETUP during (t – (Ks + 3)T, t) although
it had been operational for this period and had the call in
pending or up, This means that the source has previously
initialized the call and does not receive an ACK at least

during (t – ( K,. + 2)T, t). Consequently, if the source does
not previously enter finished state, the timer at the source
will expire < (_’.8,6 > before or at time t – 2T. causing it

to enter finished state. Similarly, since the intermediate NCU
receives no REFRESH or SETUP during (t – (K, + 4)T. t),
the destination NCU receives no REFRESH or SETUP at least

during (t – (K. + 3)T. t). Consequently, if the destination does
previously enter nonexistent state, the timer at the destination

will expire < C’.8.6 > at the latest at time t – T, causing it
to enter nonexistent state.

Next we prove e). If the intermediate NCU drops the call
due to timer, by d) it will never receive a transmitted message
or ACK for that call afterwards, so it cannot reenter pending
state. Similarly, after receiving T-ACK, it cannot receive
any transmitted message or ACK for that call. However, if

the intermediate NCU fails, the call may remain operational
between the source and the destination, and in this case the
NCU will reenter pending state after it recovers <B.3.3>.

We note that f) is obvious from the algorithms.

Next, we prove g). The claim in <A.2> is obvious. Since
there is only one COMMIT/ABORT chain and COMMIT
brings the NCU to up, claim < B.2 > follows. ACK(reject)
is not copied to the NCU, hence claim < B.3>.

Next, we prove the claim in <B.3.2>. Suppose the contrary,

i.e., an intermediate NCU receives an ACK in normal mode
in state=nonexistent, at time tl say. Let tz,tsbe,respectively,

the times when the message causing the considered ACK
was transmitted by the source and was received by the
intermediate NCU. We have tl – T < tz < t~ < tl. Note
also that at tz, the source is in pending or up for that call.
Let t~ be the last time before /1 when the NCU entered
state=nonexistent for that call. Note that the event at t~ cannot
occur because of receipt of a T-ACK— this would mean

that TAKEDOWN was transmitted by the source before tz,
causing the source to enter finished state, contradicting the

fact that the source is in pending or up at tz. Note, also,
that the event at t~ cannot occur in < B.7.8 > (timeout)
because, by Lemma 1c), this means that the source drops
the call before t~ – 2T, hence before t2. This contradicts, as
before, the fact that the source is in pending or up at 12. The
only other possibility is that, at t~. the NCU fails. However,
since the NCU is in normal mode at tl and an NCU stays
in exception mode K. T seconds after coming up, this means
that t~ S tl – KeT < L1 – (K, + 4) T). However, the NCU
receives no ACK during the time interval (t 1 – (K,, + 4)7’, t )

because such an ACK would take it out of nonexistent state,
contradicting the fact that the NCU is in nonexistent state
from t~ to t 1. By the same argument as in the proof of d),
this implies that the source must drop the call before tz,
contradicting the fact that the call is in pending or up at t2
at the source.

Next, we prove the claim in <B.6.2>. Suppose the contrary,
i.e., an intermediate NCU receives a REFRESH in normal
mode in state=nonexistent, at time tl say. Let tz be the time
when the REFRESH was transmitted by the source. We have
tl – T < t2 < t]. Note, also, that at t.2 the source is in
pending or up for that call. Let tq be the last time before
11 when the NCU entered state= nonexistent for that call. Note
that the event at t~ cannot occur because of receipt of a T-ACK
because this would mean that TAKEDOWN was transmitted
by the source before tz, causing the source to enter finished
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state, contradicting the fact that the source is in pending or
up at t2. Note, also, that the event at tA cannot occur in

< B.7.8 > because, by c), this means that the source drops
the call before t4 – 2T, hence before t2. This contradicts,
as before, the fact that the source is in pending or up, The
only other possibility is that, at t4, the NCU fails. However,
since the NCU is in normal mode at t 1 and an NCU stays
in exception mode KET seconds after coming up, this means

that t4 < tl – K.T < tl – (K, + 4) T). However, the NCU

receives no ACK during (tl – (Ks + 4)T, t) because such an
ACK would take it out of nonexistent state, contradicting the
fact that the NCU is in nonexistent state from t4 to tl. By
the same argument as in the proof of d), this implies that the
source drops the call before t2,again contradicting the fact
that the call is in pending or up at t2at the source.

The claims in < C.2 > and < (2’.3> hold because there
is only one COMMIT/ABORT chain and only a COMMIT

puts the destination in up state. The claim in < C.4 > holds

because the source transmits REFRESH only after receiving
the first ACK, and the destination transmits an ACK only after
leaving nonexistent state. Moreover, if the destination fails and
recovers, it stays in exception mode without transmitting any
ACK’S for sufficient time to force the source to drop the call. •l

Lemma 2 (Termination): If a call setup procedure is
started, either both the source and destination will eventually
go to up or the source will go to finished and the destination
to nonexistent.

Proof: Assume the contrary. The only way for this

to happen is for the source to forever stay in pending
while receiving ACK(unknown)’s at time intervals strictly
less than K,T transmitted by the destination. When it sends
ACK(unknown), the destination is also in pending. Since, by
Lemma 1, the source cannot transmit SETUP after K, time
periods, the ACK(unknown) are eventually acknowledgments
to REFRESH messages. For ACK(unknown) to be transmitted,
the REFRESH must find the destination in pending with
reserved = yes <C.4.2> (pending-yes, for short). This implies

that the destination never receives a COMMIT or ABORT,
as COMMIT causes a transition out of the pending state and
ABORT sets reserved to no. Afterwards, there would be no
way for the destination NCU to return to pending-yes. Since a
COMMIT chain is started by the source when it receives the
first ACK, the destination can receive no COMMIT/ABORT

because the chain of COMMIT/ABORT terminates at an NCU
with link/NCU forward failed <B.2.12>. This NCU will send
CNCL back and start a CNCL chain. Consider the NCU i
nearest to the source that starts a CNCL chain. We first claim
that all NCU’S closer to the source than z entered pending
state and do not leave it. They entered pending state because
they received COMMIT/ABORT or SETUP beforehand. They
cannot drop the call as a result of receiving T-ACK, because
the source does not transmit TAKEDOWN as it continuously

receives ACK(unknown). They cannot drop the call because of

the timer since then, by Lemma 1, the source would previously
drop the call. They cannot leave pending to up, because the

destination transmits no ACK(accept). They cannot leave it to
nonexistent state, since the only way for an NCU to do that
is in a failure— in that case, another CNCL chain is started

closer to the source. Consequently, the CNCL chain started at
i arrives at the source, causing it to drop the call and provide
a contradiction. •1

For our discussion henceforth, a link is considered one-
directional so that two adjacent nodes are connected by two
links, one in each direction. We denote by NCUi the NCU
before link i. We state the correctness properties in terms of
the following sets.

Ui = set of calls for which data messages
may traverse link z

Ri = set of calls in pending or up with
reserved = yes at NCUi,
i f NCUi # source

= set of calls in pending or up at NCUi
if NCUi = source

Mi = set of calls in pending or up
with reserved = maybe at NCUi if

NCUi # source or destination
= @ if NCUi = source or destination

Note that if i is a link in the forward direction, i.e.,
from source to destination, a call enters Ui when the source
NCU enters state = up for that call and exits UZ at time T
seconds after the source enters finished or when the NCU
receives TAKEDOWN, whichever comes first. This is similar
to a link in the backward direction, with the destination
replacing the source and T-ACK replacing TAKEDOWN.
Because of Lemma 1, for a given link, a call may enter Ui

at most once. We also define the following traffic capaci-
ties.

C(j) = capacity of call ~. c(x)= Ej<xm .
ci=capacity of link i.

Lemmas 2 and 4 demonstrate that a call setup will always
be successful under stable network conditions and if adequate
capacity is available.

Lemma 3 (Guaranteed reservation): A call setup initiated

for call j will cause j E Ri for all links i along its path if the
following conditions hold.

1.

2.

All links and NCU’S on the path of the call are opera-
tional at initiation time and for K. + 4 timeout periods
afterwards.
At no time from the initiation of the setup until K, + 4
timeout periods afterwards does there exist either a NCU
along the path in exception mode or a link k on the path
St. j @ & and ck – C(Rk U Mk) E C(j).

Proof: Since one of our basic assumptions is that at least
one SETUP out of KS successfully traverse all NCU’S on
the path, each NCU along the path will receive a SETUP in
state=nonexistent in normal mode. Since b) ii) holds, it will
put the call in pending state with reserved=yes. •1

Lemma 4 guaranteed setup: If the call j E Ri for all links
i along its path (as in Lemma 4 ), if no link or NCU failures

ever occur, and no takedown is triggered by either the source
or destination, the source and destination will enter state=up
for that call and will stay there.

Proof: When the first ACK reaches the source, the latter
send COMMIT. As no failures occur and every link has the
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call reserved. the COMMIT message will pass through to the
destination. The destination will enter the IIp state. After this
occurs. the assumption of message delivery in a failure-free
environment will guarantee that a REFRESH or SETUP will
be received by the destination in up state, which will transmit
an ACK(accept) to be received at the source. The source will
then enter up state. ❑

In order to prove the ulwavs reserved and no overutilizotion

proWrties (Lemmas 6 and 7), we need an auxiliary lemma. For
a given link i, we define the set 0, as follows. A call enters
Q, at setup time if reserved is set to yes, i.e., in <,4.1>,

<B.1.ti>, or <C’.l .3>. If i is a forward link, a call exits Q,
when NC[’, receives TAKEDOWN or T seconds after the

call enters finished state at the source, whichever comes first.
If i is a backward link. a call exits Qi when NCUI receives

T-ACK or T seconds after the call enters nonexistent state
from pending or up at the destination, whichever comes first.

Because of Lemma 1. for a given link i, a given call may

enter Q, at most once.
Lemma 5 Auxiliary: For every i holds 1r, c Q,. If NG’1.,

is in normal mode, then Q, c Ri U ,11,.

Ptw@ The source or destination can enter up state
only after all NCU’S have received SETUP and have set
reserved=yes: hence, at the time a call enters U,, it has already

entered Q,. If a call is in C‘1.the condition for leaving it is the
same as for leaving Q,. Hence. [~, C Q,.

A call j enters Q, only if NC[~, is in normal mode and

only if reserved is set to yes, hence at the same time j enters
R,. Now consider all events that cause j to be out of Ri U lbfi

while NC’(’, is in notmal mode. We show that, in each, such
a case holds ,j @ (/i. Call j may leave R, U Afl while NCU,
is in normal or exception mode, at time t say, because of
T-ACK < B.5.1 > or because of timer < B.7.8 >. In the

first case, at time t, it also leaves Q, at t. In the second
case, because of Lemma 1, it leaves (’, and Qi, at or before
t.

The only other case when the call j is not in R, U ,~~i while
,VC’ZT,is in normal mode is if NC’U, enters normal mode from
exception mode, at time t say, without call j in Ri U~i. In this
case, N~l~l had been in exception mode during (t – K, T. t ).
If at any time during that interval a T-ACK is received or the
timer expires (as shown before ), the call has left Q, at or before
that time so at I it is not in Qi. Otherwise. the only way for
it not to be in R, U III, is if NCU1 receives no REFRESH
or ACK during the entire exception interval (no SETUP’s

can be received since the source transmits no SETUP’s after
sending COMMIT). However, this means that no REFRESH
is received by the destination and no ACK is received by the
source at least during (t – (KC – 1)T. t). Consequently, they
enter nonexistent and finished state, respectively, before t – T,
implying that j leaves Q, before t.

Lemma 6 Always reserved: For any link i for which NC’U,
is in normal mode, j E [’ implies j E Ri U ~,.

Proof; Follows from Lemma 3.

Lemma 5 shows than a link is never used beyond its
capacity.

Lemma 7 No overutilization: For every i, it holds that

c((~, ) < (-’,.

Proof: We show a stronger result: C(Qi ) ~ C’,. In order
to show that, it is sufficient to show that immediately after
a call enters Q,, it holds that C(Q, ) < L’,. A call j is
placed in Qi only in normal mode and only if (just before
that) it holds that Ci – C(Ri U i!li ) > C(j). At that time, it
is also placed in R,. Consequently, just after the placement

takes place, it holds thatC~ > C( R, U lvfi ) and NCU, is
in normal mode. Therefore, from Lemma 3, it holds that

C~ > C(Q;).
Lemma 6 shows that the rese~ed capacity for any link will

eventually reflect the actual usage of that link.
Lemma 8 Accuracy of reservation:

1. There exists no call j and no link i such that j ~ Aft
forever.

2. There exists no call j and no link i such that j E R, – L’t

forever.

Proof: Call j enters kfi if ACK(unknown) is received

in exception mode in state= nonexistent. From Lemma 4, the

destination cannot transmit ACK(unknown) forever. Either
both source and destination will go to up or the call will
be dropped by both source and destination. In the first case,
ACK(accept) is transmitted by the destination and received at
the source; hence, unless NCUi fails (in which case j leaves
fili ), it is also received at NCU,. Then, j leaves M, and enters

R;. In the second case, the call is dropped by NC[T, as well

and, hence, leaves III’,.
To prove ii), note that if a call is in some R,, there must

have been a call setup attempt. By Lemma 4, either the source
and destination will eventually go to up or both will drop the
call. In the first case, j ~ Ui. In the second case, NCU, will
also drop the call. ❑

V. EXTENSIONS

The main goal of this section is to introduce new methods
that accelerate the capacity check part of the call setup protocol

for long calls. The basic approach taken in previous sections
was to use a sequential hop-by-hop capacity check in order
to guarantee the capacity availability along the call path.
This check must be completed before any user information
can flow over this path. Basically, a COMMIT message is
forwarded by every NCU along the path as long as this
NCU has reserved the requested capacity. If the NCU has

not been able to make such a reservation, the COMMIT
chain is interrupted and replaced from this point on by an
ABORT message. The ABORT message makes its way to
the destination with no further change. Once the destination
receives the ABORT or COMMIT message, the process is
completed. A special mechanism was introduced to guar-
antee that either this process is terminated (and it will, if
no failure occurs) or a CNCL message is received by the
source.

It is easy to observe that the capacity check process does
not affect the operation of the rest of the algorithm. The
only requirement is that, in the absence of failures, it will
terminate.
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The capacity check algorithm as described previously is

inherently a sequential process. If we count each message

transmission, reception and processing as a basic delay unit, it

introduces a time delay which is linear with the length of

the path. In most practical networks, this linear time cost
is not critical since the diameter of the network is kept
bounded by the topology design because of end-to-end delay
considerations. However, in principle if the end-to-end paths
are excessively long, this linear time cost may be a delay

bottleneck in the process of the call setup.

The capacity check process is not sequential in nature.

It is basically a distributed implementation of an AND or

OR Boolean function. It is sufficient that a single node has
not reserved the capacity in order to cause the rejection of
the call. In principle, the capacity check can be done in a
tree-like fashion, where the nodes of the path are logically
embedded as nodes of a virtual tree. Each node performs
its local capacity check and then waits for all its children

to report the result of their check. If any of these capacity

check results is negative (an ABORT message is received from

a child), the node sends an ABORT message to its parent

on the tree. If all the results are positive (a COMMIT has
been received from all children), a COMMIT is sent to the
parent. Since nodes in our system can send direct message
to other remote nodes, the tree structure is only logical and
does not have to reflect any topological structure. By using,
for example, a computation structure of a balanced binary

tree, the capacity check can be accomplished in less than

210grz units of time (where n is the length of the path). For
relatively long calls, this provides a considerable improvement.

In the following, we describe the details of this approach

and the coordination of this process along the call setup

path.
The process is initiated at each node after the reception

of the SETUP message. We assume that the copied SETUP
message contains both the forward route (partially stripped)
from this NCU to the destination via all intermediate NCU’S

and the complete reverse route. The node can compute the
length of the path 7~ from the reverse route. Upon reception

of the SETUP message, all nodes can use an identical scheme
for computing the capacity check tree. The Ioeal algorithm for

computing a binary tree is as follows.

1. Number all nodes from the destination to the source from
Oton–1.

2. Assign the nodes to groups of increasing sizes

(1,2,4, .. .. . 2k) starting from the destination. The last

group will contain fewer nodes if necessary.
3. For nodes of group k ~ 1 (with size less than or equal

to 2k ), assign parents in level k – 1 such that no more

than two nodes will share the same parent.

For example, suppose the path contains 13 nodes that are
numbered O-12. Node O is the root. Nodes 1 and 2 are assigned

to group 1 and they report to O. Group 2 contains 3, 4, 5,
and 6. Nodes 3 and 4 report to 1, nodes 5 and 6 report to

2. Group 3 contains nodes 7, 8, 9, 10, 11, 12. Nodes 7 and

8 report to 3, nodes 9 and 10 report to 4, nodes 10 and 11
report to 5, and node 12 reports to 6. Since all nodes use the

same scheme to compute the tree, there is no need for further
coordination. The tree is then used to send the COMMIT as

described.

VI. CONCLUSIONS

In this paper, we have presented a distributed protocol for
connection establishment and release in fast packet-switched
networks. The protocol exploits the fast switching capabil-

ities of the hardware to substantially reduce the possibility

of contention in congested networks. This feature dimin-
ishes unnecessary resource reservation and, therefore, reduces
blocking. We prove that the protocol ensures that a call
is established if there are sufficient resources and that all
resources are released after call termination or discomection
due to failures. An important feature of the protocol is that
NCU failures do not affect existing calls and, upon recovery,
the NCU can be easily reintegrated in the protocol.
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