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Abstract

E�cient routing has been one of the most challenging and extensive researched

topics in the communication networks �eld. During recent years, collecting the

topology and network state information essential for the routing to every node has

become a popular approach. The most common technique for solving this task

termed a link state protocol (or topology update protocol). Unfortunately, using

this technique in large networks introduces a problem of handling a large amount

of data and information updates. Most of the solutions to this problem refer to

hierarchical division of the network into smaller clusters.

Our solution takes a di�erent direction. The algorithmde�nes a vicinity around

each node that is to be updated with the change in the local node and link in-

formation. For the routing of information outside the vicinity an hierarchical yet

exible structure of borders node is de�ned. The route is calculated up to the

nearest border and from this point a new calculation is made. This new architec-

ture eliminates the need of dividing the network into clusters, in particular solving

the ine�ciency when such partition is done manually.

We have also investigate the ability to aggregate further information regarding

remote parts of the network, hence, reducing the amount of storage and updates

required.

1 Introduction

E�cient routing has been one of the most challenging and extensive researched topics in

the communication networks �eld. Routing includes the problem of �nding a way to pass
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a packet from one host to another through a datagram oriented networks (e.g. Internet)

or de�ning the path for establishing connections through a circuit based networks (e.g.

the telephone network, ATM or SNA[11]).

Two major tasks at all versions of routing solutions are the calculation of the path

itself given a known network topology and state, and the related problem of gathering the

geographically distributed information which is needed for performing such a calculation.

Many times the two tasks are binded together and are quite inseparable. One of the most

common example is the set of distance vector (also termed \Bellman Ford") solutions[4]

that used to be popular in the past.

During the last years, the evolution has been toward the separation of the routing

problem (at least within limited regions) to the above two di�erent tasks. The route

calculation task has been many times left to the implementor (as it requires no com-

munication between nodes) or was given speci�c solution for a speci�c network (e.g.

OSPF[6]). The task of collecting the topology and network state information has been

mostly concentrated around a single solution termed a link state protocol (also termed

topology update protocol). In the link state technique each station learns the topology

of the entire network. The link state protocol became the most popular solution in

the emerging standards namely IP and ATM. It is part of the relating network control

platforms such as OSPF[6] and PNNI [1] and other \modern" network such as APPN[3].

In the link state protocol each node broadcasts to the entire network each change

of its local edges. The broadcast is conducted through ooding which means that this

information is forwarded over every link. Each node maintains a topology database in

which the most recent updates regarding all links are stored. For routing calculations the

node usually uses some version of shortest path algorithm using the network description

contained in its local database. Unfortunately, using this technique in large networks

routing introduces a new problem. Each routing station must receive and store a large

amount of information updates since each station must maintain the entire network

topology. Furthermore, the network and nodes might become loaded with frequent

updates since each change must passed to all nodes over all links.

Most of the solutions to this latter problem[2, 5, 12] use an hierarchical division of

the network into smaller clusters. Nodes use the full detailed network topology map to

handle the routing within clusters. For example, in the IP standard, routing information

within the cluster (or an Autonomous System) is forwarded using a link state algorithm

(OSPF). Routing over the backbone network that connects the clusters is performed by a



vector distance type algorithm (BGP). In the PNNI standard the routing information is

split into multiple hierarchical levels. Cluster are larger as we go higher in the hierarchy.

To con�ne the amount of information originated at higher level clusters an aggregation

and compression of information must be used. In each level the nodes have a complete

knowledge of its cluster topology. Within each cluster a leader is chosen to represent the

network in the next higher level of the hierarchy. In this hierarchical solution of static

division, all the nodes within a cluster have the same view of the network. Nodes that are

at di�erent clusters will have a di�erent knowledge of the network. Note that even two

adjacent nodes can be included in di�erent clusters and hence must use high level clusters

for the routing to each other. Similarly, any other routing across the boundaries of the

clusters may be sub-optimal since the routing nodes do not have a complete information

of the path. Thus, nodes that are expected to extensively communicate to each other

should belong to the same cluster so a better routing will result. In addition, the (static)

division of the network into clusters is done a priory while the network topology and

tra�c patterns may change dynamically without a related clustering modi�cation. The

changing tra�c distribution in the network may change the notion of locality of the node

information. Furthermore PNNI is based on leader election and each leader is used for

the next level. Crashes of this leader or changes in the topology may result in a long

recovery time.

In connection oriented networks such as ATM, establishing a connection is regularly

done using source routing (PNNI) even for remote destinations. The use of source

routing may results in sub optimal route since the source station is relying on outdated

information as a result of the distance to the destination.

Ja�e [8] solves the problem of routing in large networks in di�erent way. He shows an

algorithm where two local databases are maintained. One is the inner cluster database,

the other is the radius database. The radius database includes all the topology of the

network that is at distance up to a certain radius. The maintenance of the radius

database also requires more of the network resources as we will later describe. Routing

is done using the best out of the two shortest paths of both databases. His solution still

uses the �xed partition of the network into clusters. In particular, routing outside the

cluster (and the radius) use only the �xed hierarchical division of the network and does

not gain an advantage from the introduction of the radius database.

Our solution is based on the idea of including at each node a radius database but it

takes a di�erent direction. The algorithm de�nes a vicinity for each node that is to be

updated with the change in the topology and other link information. This eliminates



the need of dividing the network into clusters, in particular solving the ine�ciency when

such partition is done manually. For the case of circuit based routing, our solution

calculates the routing path in increments or segments. The route is calculated up to a

certain point and from this point a new calculation is made. When comparing to source

routing, this solution may result in better route since the decision is made calculated

using updated data. On the other hand it avoids the overhead incurred by calculating

the route at every hop. Similar solution can be used in connectionless networks where

routing outside the node vicinity is done toward nodes that report short distances to

the �nal destination.

The rest of the paper is organized as follows: in section 2, an outline of our solution

is described. In section 3, a detailed description of the inner algorithm is given and some

practical improvements for implementation of this algorithm. Routing outside the node

vicinity is described in section 4. We show some enhancements to decrease the network

overhead in section 5.

2 Outline of the proposed solution

The routing algorithm is based on the classical assumption that most of the messages are

destined locally. In order to exploit locality, our algorithm, similar to other hierarchical

algorithms, divide the network into regions[9]. Most other algorithms use static division

to clusters and splitting nodes to di�erent cluster. This division may cause two adjacent

stations to be in di�erent clusters. Our algorithm avoids the use of �xed clusters by

de�ning for each station a local environment. Each station knows all the topology

information (links) that are at a �xed distance from it. This distance de�nes for each

node an environment that is termed the node's vicinity. The distance can be measured

using a variety of metric parameter ( hops, delay, administrative weight, etc.).

Routing information is disseminated using a link state algorithm (topology update

algorithm) up to a limited distance. Within the vicinity, the algorithm is based on the

topology database (link state) model and, outside the vicinity on a combination of the

distance vector (Bellman Ford) algorithm and the local link state. This way, nodes

receive complete information about nodes that are at a smaller distance from them.

Unlike the link state algorithm, since each node has a di�erent vicinity, the information

stored at each node is di�erent. Namely, the topology database at a node i will be

composed of all nodes r that have i within their vicinity and the link emigrating from

these nodes. The notion of the node vicinity also de�nes the node's border nodes as



these nodes within the node vicinity whose distance is equal to the vicinity radius (R).

Each of the border node b is responsible for passing in its vicinity, the information that

node r is at distance of R from itself. In particular, the nodes which are outside r 's

vicinity (but inside b's vicinity) learns about r through the link state updates of b.

This guarantees that all nodes that are at distance 2 �R or less from r, learn about r.

Moreover, the border nodes of b deliver the information about r to all the nodes that

are at distance of 3�R or less from r. This continues until the information of r reaches

all the nodes in the graph. The routing outside the vicinity is done in several steps.

The source chooses a route to the best border node inside its vicinity (best in the sense

the overall distance from the destination through this node is smaller or equal to other

choices). The selected border node continues this path to its best border node. This is

done until destination is reached.

Throughout our discussion we will assume that all the routing algorithm uses mini-

mum hop as their routing criteria. Later, we will show how our solution can be adjusted

to other optimal routing criteria and the inclusion of additional QoS constraints.

3 Hop Limited Topology Update algorithm

In our description of the routing algorithm we refer to a routing station as a node. Nodes

are connected by bidirectional links which are composed of a pair of opposite directional

edges. A link is considered operational for the purpose of routing if both directional

edges are operational. We de�ne distance between two nodes as the minimum number

of operational links between them. The basis for the algorithm is that every node has

a full updated knowledge of its outgoing edges. The node is termed responsible node

regarding its local outgoing edges. Each edge is described using a �eld termed edge

description which contains some parameters that describe the edge such as capacity,

throughput, delay, etc. It also contains the edge description number which is a sequence

number that is assigned to distinguish a new data from an old one. The node stores this

information in the node database. The node vicinity is termed as all the nodes whose

distance from the responsible node is smaller than a system parameter termed R. Each

node is responsible to pass its edges descriptions to all the other nodes within its vicinity.

For each edge entry the node maintains a passed list which contains the identity of the

adjacent nodes that this description was passed to.

The message model described here is the classical dynamic model[10]. In this model,

if a message is sent over an operational link it will correctly arrive within �nite time or



the link fails. An addition to the failure model is the assumption that a station may crash

(becomes inoperative) due to shutdown or power failure. When this situation occurs all

its links fail to operate and its memory may be lost and cannot be trusted. The station

knows when it comes up and potentially recovers from a crash. The algorithm works in

the following way:

Change in local edge description: For every change in the edge description, the

node increases the edge description number by one. The node sends to all its neighbors1 a

new UPDATE message which contains the new description including the new description

number. Also, each node performs a process termed linked update which will be described

later. The whole operation of sending new UPDATE message with new edge description

number will be termed publication. When an adjacent edge fails, the node deletes the

neighbor connected via this edge, from all the passed lists of all the edges it maintains.

Arrival of UPDATE: Each UPDATE message contains an edge description which

includes an edge description number. When a node receives this message, it compares

it to its local view of the same edge. If the data in the UPDATE is newer (in terms

of higher description number), it replaces its database information with the one from

the UPDATE message and publishes it to all the neighbors that are inside the edge's

responsible node vicinity, i.e. the distance between the responsible node and the neighbor

according to the current database is smaller than R. Else, it discards the message. This

holds unless the UPDATE is regarding its own outgoing edges (it is the responsible node

for this edge). In this case, if it receives a higher description information than the one in

its database, it must publish a new UPDATE message with a higher description number.

In all UPDATE reception cases, the new received information may change the dis-

tance between certain responsible nodes and certain neighbors. In particular, parts of

the database that were outside the neighbor vicinity may now be inside it. The node

must check for each of its neighbors which edges description should be passed on to it. It

sorts them in increasing order according to their distance from the neighbor node. The

node sends to its neighbor these edge descriptions each in a new UPDATE message. It

also adds the neighbor identity to the passed list of each such edge. This last operation

is termed linked update.

1If we use a weight function other than hop distance we should pass the UPDATE message only to

neighbors which are at distance less than R



Local edge becomes operational: When an attached edge becomes operational, a

new neighbor is added to the node. Since this neighbor is not in the passed list of any

of the edges in the database, relevant parts of local database (according to the distance

from an edge to the neighbor) are passed in separate UPDATE messages to the other

side. The node updates the passed list accordingly. The node also performs a linked

update.

Deleting of distant entries: To prevent keeping unnecessary information in the

nodal database, the node may delete, in response to an UPDATE message, entries that

are outside its vicinity. It is done by sending to all its neighbors a DELETE message

that includes this edge description. After sending this description, the entry for this

edge is deleted.

Receiving a DELETE message: The DELETE message includes an edge descrip-

tion and the sending node identity. The receiving node checks its database for the edge

entry. If the responsible node for this edge is at distance larger than R from the sending

node, the node deletes the sending node from the edge passed list. Else, it replies with

an UPDATE message that includes the edge description and edge description number.

Ja�e [8] describes an algorithm based on the \radius database". First his algorithm

passes topology information using a distance vector methodology up to a certain dis-

tance. This largely increases the number of updates that are transmitted by nodes. It

su�ers several drawbacks in comparison to our algorithm. Each UPDATE message also

contains the distance to the source of the information and of the cluster it belongs to.

This additional information is not needed in our solution as described above. His algo-

rithm does not have a mechanism to delete entries that were in the past within the node

radius. Hence, the size of the topology database can be very large. It also has larger

number of messages. In the worst case a node may receive and change an entry for a

particular edge and sequence number up to R times. since it may arrive in decreasing

order. For each of these arrivals the node will publish a new message that may cause R

times the number of messages in our algorithm.

3.1 Formal description of the UPDATE algorithm

Messages

� UPDATE :

1. Edge identi�er.



2. Description parameters - capacity, delay, throughput: : :
3. Description number - a sequence number to distinguish between older and

newer description.

� DELETE :

1. Edge identi�er.

Data Structure

Node database - Each entry includes:

1. Edge description.
2. Edge description number.
3. Passed list - A list of the node neighbors this edge description has been passed

to.

De�nitions
e - Identity number of edge e.

num
msg

(e) - Description number of edge e in the message.

des
msg

(e) - Description parameters of edge e in the message.

num
db

(e) - Description number of edge e in the database.

des
db
(e) - Description parameters of edge e in the database.

Pass(e) - The group of all the neighbors nodes that the description of e was passed to.
n(e) - The neighbor that is connected via edge e.

O - The set of all the outgoing edges from the node.
N - The set of all the neighbors of the node.
re - The responsible node of edge e.

Local Node - The identity of the node which run this algorithm.
dis(n1, n2) - The shortest distance between node n1 to node n2.
dis(e, n1) - The shortest distance between node re to n1.
Messages :

UPDATE(e, des
msg

(e), num
msg

(e)).

DELETE(e, n 2 N).

Algorithm



Edge e becomes operational
For each e 2 database:

send UPDATE(e, des
db
(e), num

db
(e)) =) n(e).

Pass(e) Pass(e)+ n(e).

Arrival of UPDATE(e, num
msg

(e), des
msg

(e))

If ((num
msg

(e)> num
db

(e)) and (e 62 O))

num
db

(e) num
msg

(e).

des
db
(e) des

msg
(e).

Pass(e) ;
call CHECK UPDATE.

Else if ((num
msg

(e)> num
db

(e)) and (e 2 O))

num
db

(e) num
msg

(e)+ 1.

Pass(e) ;
8n 2 N

send UPDATE(e, des
db
(e), num

db
(e)) =) n.

Pass(e) Pass(e)+ n.
Else discard the message.
call DELETE DISTANT.

Change in edge description of e 2
For each change:

num
db

(e) num
db

(e)+ 1.

Pass(e) ;
8n 2 N

send UPDATE(e, des
db
(e), num

db
(e)) =) n.

Pass(e) Pass(e)+ n.
call CHECK UPDATE.

Receiving a DELETE(e, n)
If (e 62 database) discard the mes-
sage.
Else If (dis(e; n) > R)

Pass(e) Pass(e) - n.
Else (dis(e; n) � R)

send UPDATE(e, des
db
(e),

num
db

(e)) =) n.

CHECK UPDATE
For each n 2 N

Not Passed (8e 2 database j
(dis(e; n) < R) and

(n 62Pass(e)))
Sort Not Passed according to
dis(e, n) (smaller �rst).
For each e 2 Not Passed

send UPDATE(e, des
db
(e),

num
db

(e)) =) n.

Pass(e) Pass(e)+ n.

DELETE DISTANT
For each e 2 database

If (dis(e; Local Node) > R)
For each n 2 N

send DELETE(e,
Local Node) =) n
delete the entry for e
in the database.

3.2 Correctness proofs

Ja�e [7] has proven the correctness his version of the radius database. His algorithm is

very di�erent from ours including his correctness properties. Therefore, there is no way

to derive our correctness from his and we presents the correctness of our algorithm.

In the following section we assume that a �nite number of edge descriptions changes

and a �nite number of node crashes is encountered in the network.

Theorem 1 After a �nite time since the last edge changed or the last node crashed, no

more messages are sent or accepted. Also, all nodes have an updated description of all

the edges inside their vicinity.



The proof of this theorem involves the de�nition and proof of several lemmas and it

is given in Appendix A.1.

3.3 Practical considerations

Deleting of an edge entry

n0 n n n n n nn-1 ni+1i1 2 e

Figure 1:

A node may delete all the entries of edges that are outside its vicinity. If an edge is going

up and down frequently, it will cause a large amount of routing information to be passed

every time it is going up. This is worse when the graph become partly disconnected.

For example, in �gure 1, if all the nodes delete all the information for the other half

of the graph each time that the edge e becomes inoperative then, it will cause all the

information to be passed again when the node is operational again. It can be avoided if

the nodes will delete these entries after a longer time.

Routing with other parameters than hops

The algorithm as described above is proven for the case of a hop distance based radius

but the algorithm may use any weight function. It may include others parameters like

delay, capacity, throughput, etc. The only restriction is that the same weight function

will be used by all the node in the graph.

Con�guring a vicinity

In some instances the exibility of the vicinity boundaries may not be suitable. For

example, it may happen if a certain weight function cause a vicinity to be too large. An-

other example is when the vicinity structured across certain administrative boundaries.

Speci�c nodes may be forced to be the end of a vicinity by con�guring its outgoing edge

that crosses the end of the planned vicinity, with a weight equal to R.
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Figure 2: Which nodes become border nodes

4 Routing outside the Vicinity Size radius

Outside the node vicinity, the routing information is handled by length increments of

R. In the �rst increment, all2 nodes that are at distance of R from a responsible node r,

publish themselves as border nodes of order 1 for r. In the second increment, all nodes

that have the closest �rst order border node exactly at distance of R, and do not have r

inside their vicinity publish themselves as border nodes of order 2. Clearly, these nodes

are at a minimal distance of exactly twice R from r. In each increment, each node i

marks in its database inside its vicinity the border nodes of the smallest order for r. If

among all these marked nodes the closest one to i is at distance of R, i becomes a border

node. The order that i takes is one larger than the marked nodes. These increments

continue until all the nodes in the graph �nish to publish themselves as border nodes of

any order for r. For example, in �gure 2, we examine the responsible node r. Within

its vicinity (marked with radius 3) all the nodes includes r in their database according

to the inner protocol. The nodes at distance 3 from r (mark in bold circles) publish

themselves as border nodes of order 1. The nodes that are at distance 3 from the �rst

order border nodes (excluding r) publish themselves as border nodes of order 2 for r.

2Later we will describe a way to decrease the number of border nodes in order to prevent message

overload and memory consumption.



All these border nodes of order 2 forms a logic circle of radius twice R around r (marked

with radius 6). This is done until every node r in the graph is at distance less than R

from at least one border node for every node in the graph.

When a node establishes a connection to a destination that is outside its vicinity,

it establishes �rst a path to one of the closest3 border nodes of minimum order in its

vicinity. This node will establish a path to the next border node of smaller order, etc.

This is done until the destination is reached. Note, that this procedure results in a

minimum hop distance route.

4.1 The distributed Algorithm

The following actions are all taken as a reaction to a Change in the node vicinity. The

changes in the node vicinity are due to the local edges changes or to the arrival of

UPDATE messages that a�ect the database information. We add to the �rst protocol

a new type of topology item which describes a border node. In this topology item each

border node includes the destination node identity, its identity as a border node, its

order, a sequence number, and some metric that describes its path to the destination

node (to be later discussed). This topology item is passed using a regular UPDATE

message as part of the inner vicinity protocol. Special tag is added to the message to

indicate if the border node ceases to function as a border node for a certain node r.

After each change, node i will perform the next procedure: For each node r, if

according to i 's local view i is at a distance of R from r, i becomes a border node of

order 1 for r. For each node r that is outside i 's vicinity i will examine all the border

nodes for r that are within its vicinity. Among all these nodes i chooses the borders

with the smallest order. If the closest one is at distance of exactly R from i, i becomes

a border node of order one larger than the ones it chose and sends an UPDATE message

appropriately.

If i was a border node for a certain node, and now its distance is smaller than R from

the smallest and closest border node, it ceases to function as a border node, informing

all the nodes inside its vicinity through an UPDATE message.

4.2 Formal description

De�nitions
3Cases where routing includes QoS constraints will be discussed later.



r - Identity number of responsible node r.

ord(b) - The order of border b.

pathr - The description of a path or paths from Local Nodeto node r.

Local Node - The identity of the node which run this algorithm.

Algorithm

Change in the node vicinity
call CHECK BORDER.

Arrival of UPDATE
call CHECK BORDER.

CHECK BORDER
For each r 2node vicinity:

If (dis(Local Node; r) = R)
call BE BORDER(r, 1).

If Local Node is a border node for r and
(dis(Local Node; r) 6= R)

call CEASE BORDER(r).
If r is a border node of order k for node n

and (dis(Local Node; r) = R) and
6 9m 2 databasej(m is a border node of
order smaller than k for node n) or
((m is a border node of order k for node n)
and(dis(Local Node;m) 6= R))

call BE BORDER(r, k).
Else if not exists such r in vicinity

call CEASE BORDER(r).

CEASE BORDER
For each n 2 N

send UPDATE(r, No Border,
Local Node) =) n.

BE BORDER( , )
choose one border node m for r
with the smallest order.
pathr  The combination of the
path to m and the path from m to
r.
For each n 2 N

send UPDATE(r, pathr,
Local Node, ord(m)+1) =) n.

4.3 Correctness Proof

In the following we assume that after some time t the network stabilizes in the sense

that no more edges changes happen and the network is connected.

Theorem 2 After a �nite time since the last edge topological change or the last node

crash, no more messages are sent or accepted and every node has inside its vicinity at

least one border node for every node in the graph.

The proof of this theorem involves The de�nition and proof of several lemmas and it is

given in Appendix A.2.



5 Practical Enhancements

5.1 Reducing the number of border nodes

In our description of the outer routing algorithm, each node at distance of R from a

responsible node must become border node, and must publish itself as a border node

within its vicinity. While this approach solves the problem of having too many nodes

in the nodes database, it may result in a large number of messages and high memory

consumption due to a large number of border nodes for every node in the graph each

advertises the distance to that responsible node within its vicinity. In the sequel, we

describe a modi�cation to the algorithm that reduces the total number of border nodes

for a responsible node r. A reduction in the number of border nodes results in a sub

optimal routing. Let's term the length of the optimal path between nodes i and j to be

Opt(i,j). We de�ne a reduction factor 0 < � < 1 and we will present an algorithm that

produces routing paths with length bounded by (1 + �) �Opt(i; j). In other words, the

algorithm introduces a trade-o� between the reduction in the number of border nodes

for some node r and the increase in the length of the routes that lead to r.

The modi�ed algorithm changes the decision process whether or not a node n should

become a border node of order k for r. In addition to its distance to the closest border

node of order k-1 for r, this node also checks if its distance from all the known (known

refers to this node database) border nodes of order k is larger than �
2
�R. If its distance

is larger, then the node must become a border node of order k for r.4

B1

B1

α
2

R

R

R R>
Yr i

R>*

R>

Figure 3: A node should become a border node

4Note that, in order to improve the quality of paths between certain nodes in terms of routing metrics

other than hops, a node may also be required to become a border node even if its distance is smaller

than �

2
�R from the closer border node of the same order.



For example, node Y at �gure 3 will not publish itself as a border node since its

distance from the other border node is less than �
2
�R.

In certain timing scenarios, this modi�cation alone does not prevent many or all

nodes at distance of R from r from becoming border nodes. This may happen since the

local knowledge of distances may be known before they receive the publication of other

border nodes of the same order within their vicinity. Therefore, additional modi�cations

are needed to indicate when a node should cease or become a border node for r. We

may suggest that a node i may cease to function as a border node if, according to i 's

local view, all nodes in i 's vicinity have at least one border node (except for i) with

order k for r at distance smaller than �
2
�R. However, this condition alone may raise a

new problem, where a group of nodes exchange the role of being a border node for the

same r inde�nitely. To prevent this problem we permit a node to cease being a border

node only if it has a border node with higher identity at distance smaller than �
2�R.
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Figure 4: Reducing the number of border nodes

For example Figure 4 shows a network with R = 8 and � = 3
4 . The current border

nodes are marked as bold circles. Node 20 will cease to function as a border node since

it knows a border node with a higher identity (25) at distance smaller than �
2 �R=3.

Nodes 2, 4 will also cease being a border nodes since border 2 knows border 4 and

border 4 knows border 6. But after node 4 ceases being a border node, node 2 will

notice that it has no border node at distance of �
2�R and it will become a border node



again.

This algorithm reduces the number of border nodes. Finally, every two adjacent

border nodes will be at a distance of at least �
2
�R of each other and the maximal

distance between two adjacent border node will be � �R. Note that for � � 2
R

the

modi�ed algorithm is equal to the unmodi�ed one, and for higher value of � the number

of border nodes decreases. We cannot increase � beyond 1 since the node learns its

distance from the inner algorithm and it only provides information up to a R radius.

The number of border nodes depends on the graph topology. In the case where the graph

corresponds to a circle of n border nodes around a responsible node (as in �gure 4), the

number of border nodes is reduced to less than n � 2
��R

.

Theorem 3 A �nite time after the last topology change, there will be no more changes

in the border nodes.

Proof Let's look at an arbitrary node r. We prove this theorem by applying induction

on the order of the border node for r. The base of the induction is true for order 0 as

the responsible node does not change. The step of the induction assumes that all the

border nodes of order n-1 for r have published themselves and will not change any more.

Let S be the set of nodes that are at distance R from a border node of order (n-1) which

become border nodes of order n for r and publish themselves during the algorithm. Let's

look at node x 2 S that has the highest identity in S. This node will not cease to be a

border node of order n for r since it will not know any other border node of order n for r

that has a higher identity. According to the algorithm, all nodes that are at distance

smaller than �
2 �R from x will cease to function as a border node since they know a

higher identity border node of order n for r at distance smaller than �
2�R. Let's remove

all these nodes including node x from S, and look for the higher identity again. We

continue this procedure until there are no more nodes in S. Thus, the �nal role of node

in S is obtained. Therefore the set of border nodes of order n for r is �nite and will not

change any more. 2

Lemma 1 A node that is at distance of R from the closest border node B of order n for

node r and does not have border node of order n-1 for r within its vicinity, is at distance

of at least (n+1)�R
(1+�=2) hops from r.
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Proof The lemma states the property for every node that has potential to become a

border node of order n+1 for r Including, of course, the �nal border nodes of that order.

Let's look at an arbitrary responsible node r. We will prove this lemma by induction

over the order of the border nodes for r. The base of the induction clearly holds since

border nodes of order 1 for r are at distance of R > 1�R
(1+�=2)

. We assume that every

border node of order ` (` � n) is at least at distance l�R
(1+�=2)

5. Let's look at any node i

that is at a distance of exactly R from its closest border node Bn of order n for r and

does not have a border node of order n-1 within its vicinity. The shortest path between

i and its closest border node of order n-1 (which we term Bn�1) must pass through a

node Y that is at distance of R from r (see �gure 5(a)or(b)). If Y = Bn the lemma

clearly holds, hence we assume Y 6= Bn.

We examine two cases:

1. Bn is the closest border node of order n to Y (�gure 5(a)). We mark the distance

between Y and i with , and the distance between Y and Bn with �. According to

the algorithm, � � �
2 � R otherwise Y would become border node of order n for r.

We obtain, +� � R from the triangle inequality. Therefore  � R�� � R��
2 �R:

2. Bn is the not the closest border node to Y and there is another border node B0

n

(�gure 5(b)). We mark the distance between Y and i with D, and the distance

between Y and B0

n with �. This case is even easier since D � R and � � �
2 � R as

before. Thus, We obtain as in the �rst case  � D � � � R� � � R � �
2 � R:

In both cases, the distance between Y and i is at least (1� �
2 ) � R. From the induction

5It is not necessary for the proof to also assume that all potential border nodes follow the same

condition



assumption we obtain that Bn�1 is at distance of at least (n�1)�R
1+�=2

from r. The distance

from node i to Bn�1 is (2�
�
2
) � R.

For 0 < � < 1, the distance from i to r is at least

(n� 1) � R

1 + �=2
+ (2 �

�

2
) � R >

(n+ 1) � R

1 + �=2

2

Theorem 4 If the routing procedure is for any node i to reach any node r is by i reaching

�rst the closest border node of the smallest order for r and from there to follow closest

border nodes in decreasing order. Then, the path length between nodes i and r is bounded

above by (1 + �) �Opt(i; j).

n

r
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i

Y

β

OPT’’

OPT’
D

OPT

Figure 6:

Proof From lemma 1, we obtain that every node i at distance of exactly R from the

closest border node for r satis�es this condition. A node that is at di�erent distance

will establish a connection also to the closest border node Bn (see �gure 6). Node Y is

the potential border node of order n which i should have used for optimal routing. We

marked the distance from Y to i with OPT 00 and the distance from Y to r with OPT'.

From lemma 1 we obtain OPT 0 � n�R
1+�

2

, from the triangle inequality D � OPT 00 + � �

OPT 00 + �
2 . The optimal route to r is OPT = OPT 00 +OPT 0. The route length that i

will establish is D + n � R and :

(1 + �)OPT = (1 + �)(OPT 0 +OPT 00) � (1 + �)
n � R

1 + �
2

+OPT 0



� (1 + �)n � R +
�

2
� R+OPT 00 � n � R+D

2

5.2 Aggregating information

As in other distance vector based algorithms our outer routing algorithm might require

large routing tables and long messages in order to maintain reachability to all nodes.

Each node is a potential destination and all the other nodes in the graph must learn a

way to reach it. Similar to all these other routing algorithms aggregation procedures

should be devised in order to solve this problem. Unfortunately, such aggregation is not

guaranteed to be e�cient in the general case and require some `aggregability' assumption

regarding the distances and the naming of nodes that should be aggregated together. We

will describe here a solution to this problem, under the same aggregation assumption,

by combining border reports for a number of nodes within one border node.

An information can be aggregated by a border node which collapses several respon-

sible nodes into one distance entry. Let's assume that a node m knows some border

nodes b1 : : : bk that have close enough (`aggregable') description about their responsible

nodes r1 : : : rk. m may become a border node for r1 : : : rk even if its distance to some of

the border nodes is smaller6 than R. In the UPDATE message, the node will publish a

list of this group of nodes and an aggregation of the paths to them.
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Figure 7: Aggregating border nodes.

The order that m will publish depend on b1 : : : bk. If b1 : : : bk has the same order n,

then m takes an order higher by one, n+1. For example, in �gure 7 the vicinity radius

is 3 hops. The number in the top right of every border is the order of the border.

Nodes 1, 2 are aggregated together by the nodes marked with bold circles. If we look

at the top bold node we see that its distance from border node of order n for 2 is equal

to R=3, but its distance from border node of order n for 1 is only 2 hops. This node

6In our solution, it can not be larger.



becomes a border node since it realizes that the distance between these two border nodes

is small in relation to the distance to the responsible nodes (the order of the nodes times

R).

If b1 : : : bk have di�erent orders, then m publishes the minimum and the maximum

orders plus one. For example if the smallest order of b1 : : : bk is ` and the highest is k, m

will publish the order as `+1 to k+1. The lower number will be used by other nodes as

the order of the node for the algorithm, and the maximum value will be used for routing

as an estimation of the distance between the border node to the responsible nodes. If

the order of the aggregation at the border node is ` to k the nodes in the vicinity that

are closer than R will not become a border node if they do not know a border node with

order smaller than ` at distance of exactly R. The distance to all the responsible nodes

that this aggregation node presents is less or equal than k � R. The nodes that are at

distance of R from this node and do not have another border node of order smaller than

` for these responsible nodes will become a border node of order `+ 1 to k+1.
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Figure 8: Aggregating di�erent orders of border nodes together.

For example in �gure 8 the vicinity size equals to two hops. The number in the top

right is the order and the number in the bottom right is the identity of the aggregated

nodes. Border node 7 is aggregating border nodes (5,6) of nodes 1, 2 with order 3.

Border node 9 is aggregating border nodes (7,8) of nodes 3, 4 with order 4. Border

node 11 is aggregating border node (9) of nodes 1, 2, 3, 4 with order 3�4. Border

node 13 is the next border nodes of nodes 1, 2, 3, 4 and it takes the order 4�5.

6 Summary

We have developed a novel technique that performs a hierarchical routing without di-

viding the network into rigid clusters. Similar to other hierarchical architecture, this

algorithm is based on the assumption of communication locality. Our system algorithm

is divided into two parts namely the outer and the inner algorithms. In the �rst algo-

rithm, each routing station has a complete knowledge of its local surrounding using a



distance limited link state protocol. We also described a way to handle the outer routing

using the update mechanism of the inner routing. Our outer algorithm present a way

to communicate between remote station. It use the border node of the inner algorithm

as the way to pass the routing information. Each border node presents to the outer

surrounding itself as a way to route to the node. To prevent the problem of a large

number of messages in the outer part, thus we devised a way to control the number of

border nodes and to aggregate similar routing information.

In case of circuit based routing, our algorithm calls for the use of segmented routing.

We intend to compare this routing to the complete source routing as it done today in the

PNNI standard. Further work may also be done concerning the aggregation of names

and information.
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Appendix

A Correctness Proofs

A.1 Inner algorithm

In the following section we assume that a �nite number of edge descriptions changes and

a �nite number of node crashes is encountered in the network.

Lemma 2 Assume that for edge e the highest edge description number known at time t0

is maxe (t0). Also assume that between time t0 to time t there are xe(t0) changes in the

state of e that were reported by its responsible node r(e), and r(e) has crashed no more

than Cre(t0) since t0.

If t > t0 then maxe (t) � maxe (t0) + xe(t0) + Cre(t0) + 1

Proof According to the protocol, only the responsible node of an edge may create a new

edge description (with a di�erent number). Let us observe, without loss of generality, an

edge e with a responsible node r(e). All the edges description of e are originated in r(e).

The edge description number in r(e) at time t0 can be maxe (t0) or smaller. According

to the protocol, there are three cases that will cause r(e) to send an edge description:

i. Change in the edge (including the report of edge going down).

ii. Node recovers from a crash.

iii. Report from a neighbor with higher edge description number.

The �rst case results in the edge description number being increased by one. The

second case causes the number to start again from zero. The third case causes the number

to be one higher than the number in the report. According to the lemma assumption,



from time t0 until time t the �rst case happen xe(t0) times. Each time it causes the

number to increase by one.

The other possible event that triggers an increase in the description number is the

third case. This can only happen after a node crash and recovery. The highest number

that r can receive is the highest number before the crash. This will cause r to send a

number that is higher by one than the one it received. Assuming there are only Cre(t0)

node crashes since t0, then, the increment can only happen Cre(t0) times.

If at time t0 the number in r(e) is smaller than maxe (t0), there may be a time in

which maxe (t0) arrive to r(e) and from that time it start to count the changes and

crashes. But in this case maxe (t) will be even smaller.

Finally if we sum the three cases together we get

maxe (t) � maxe (t0) + xe(t0) + Cre(t0) + 1

2

Lemma 3 Assume there are no DELETE messages sent from any of the nodes. After

a �nite time since the last edge change and the last node crash, no more messages are

sent or accepted.

Proof The time t is de�ned to be the last time a change in an edge or node crash

happened.

Let's look, without loss of generality, at one edge e. Since the last time this edge was

operating, the following event classes caused a transmission over the edge e:

1. Outgoing edge becomes operational.

(a) If e becomes operational, The two connecting nodes exchange their database.

(b) Another outgoing edge except e becomes operational. The exchange of the

information on the other node cause an arrival of new information. Therefore,

some linked information that has not been passed before may be passed on

edge e.

2. Arrival of edge description UPDATE

(a) If the UPDATE message is new and the node is not responsible for the de-

scribed edge, it will be sent to the other side. Also linked information that

have not been passed before, may be passed.



(b) If the UPDATE message is newer than the database record and the node is

responsible for the edge in the UPDATE message, a new UPDATE message

with higher number is sent.

3. Change in outgoing edge description

(a) The node sends the new change over the edge.

(b) Due to the change, parts of the database that have not been passed before,

may be passed.

After time t, events of class 1 and class 3 do not happen since according to the

assumption, no more changes in the edge occur. Events of class 2 happen only a limited

number of times, since after each such event an UPDATE message is passed on the

edge e and both nodes update their database for the higher number. Since the node

does not crash after time t and no delete operation is done at the node, it will not

change its description for any smaller number. This means that for each e 2 E all

di�erent descriptions can be passed over the edge and only once. This is bounded by the

highest number for each edge that exists in the graph at time t, according to lemma 2. 2

Lemma 4 Assume there are no more changes in the network after time t. Also assume

that after t, none of the responsible nodes receives an UPDATE messages which describe

one of their outgoing edges and has a higher description number than the one in their

database. Then, there is a time after which no more messages are sent or accepted.

Proof Let tk be the later time between t and the last time any node received a new

UPDATE message (with higher description number) which describes edges at distance k

or less, from it. At this time, the node knows the state of all the edges that are outgoing

from distance smaller or equal to k. (t0 = t)

Note that for the simple case that there are no DELETE messages, the property of

this lemma was proven by Lemma 3. It will be proven that there exists tk for any k and

therefore there is a time after which no UPDATE messages are sent. After this time no

more DELETE message are sent since DELETE messages are only sent as a response of

the reception of an UPDATE message. Therefore, there is a time after which no more

messages are sent. The existence of such tk will be proven by induction over the distance

from all responsible nodes.



Let us examine the base of the induction. After time t0, all nodes at distance 0 (the

responsible node itself) from an arbitrary responsible node r will not send any message

that includes information of an edge description originated in r and will not delete these

entries.

Let us look, without loss of generality, at a responsible node r and at any of its

outgoing operational edge e. The responsible node r sends a message with information

about e under the following events.

� Change in the state of e.

� Arrival of an UPDATE message for e to r.

� Arrival of an UPDATE message for other edges to r which due to change in the

local topology database will cause sending DELETE message regarding e.

If this happen after time t0 then the �rst two cases are in contradiction to the basic

assumption of the lemma. The third case can not happen since a responsible node will

never erase an entry of an operating outgoing edge.

Let us examine the step of the induction. The induction assumption is that there

exists a time tk�1 where all nodes at distance k � 1 from a responsible node r will not

send any message that includes information about r outgoing edges and will not delete

the entries of these edges. We need to prove that there exist time tk for which all nodes

at distance k from r will not send any message that includes information for r outgoing

edges and will not delete these entries.
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First we prove for k � R. Let us observe, without loss of generality, at a node nk

which is at distance k from r, at a shortest path nk; nk�1; : : : ; n1; r and at the edge e

that is outgoing from r. The lemma assumption is that after t, the responsible nodes

are not getting UPDATE messages with higher description numbers for their outgoing

edges. At Time tk�1 all nodes have �nal information about nodes that are at distance

of k-1. At the latest, at time tk�1, this �nal information is sent from such nk to all

the nodes at distance k. Let's mark the time when all this information arrives as tk,

where tk � tk�1. Note, that at time tk, the information about e at nk is at the same

or higher description number. After tk, no new information regarding e can arrive at

nk, since arriving of such information to nk will cause sending it to nk�1 (which is at

distance k-1 to e) and it will imply that nk�1 will get new information after tk�1. From



the above and the induction hypothesis we also know that after time tk, nk has updated

information of all the edges along the path r; n1; : : : ; nk and of edge e (which are closer

to it). Therefore, nk will not delete these entries, the entry for e, nor send a DELETE

message through one of its outgoing edges. Note, that at time tk, if a node is at distance

greater than k it can not appear in node local database as at distance of k or less. Since,

looking at the closest node of all the nodes that hold this characteristic nl (l < k) and

at the nl�1 that is one closer to the responsible node r, it can be seen that nl�1 will have

a correct description of r outgoing edges and it will pass it to nl. This implies that nl

has an updated description of all the path to r.

For k > R. At time tR any node knows all the edges at distance R. As shown

above, after this time all the nodes will not send an UPDATE message for nodes that

are at distance smaller or equal to R. According to the protocol, a node can not send an

UPDATE message for responsible nodes that are at distance larger than R. Therefore,

no more UPDATE messages will be sent after tR. A node may receive an UPDATE

message that was sent before tR and it may send, in response, a DELETE message for

all the entries that are at distance larger than R. This DELETE message is for entries

that are outside of R, since all nodes have full information about all the nodes inside the

vicinity. These DELETE messages will not be replied with any message since this means

that after which is a time tlast � tR where no more UPDATE or DELETE messages are

sent or accepted. 2

Proof (theorem 1) From lemma 4, we can see that if none of the responsible nodes

receives an UPDATE message for its own outgoing edges then, there is a time where no

more messages are sent or accepted. These UPDATE messages must arrive from any

other node in the graph. But this description was sent in the past from the responsible

node. If we use lemma 2 we can see that this description number is limited7. This

means that an UPDATE message will arrive to a responsible node only limited number

of times. If no new UPDATE message arrive until tlast, then lemma 4 will hold. Else,

during the time between t and tlast an UPDATE message will arrive and there will be

a new t0 and therefore a new tlast. After the �nal time when an UPDATE message for

any of the edges in all the responsible nodes arrives, there are no more messages sent

7If we use lemma 2 for t = 0;maxe (0) = 0 we obtain since the �rst establishment of the edge and

after xe(0) changes and Cre(0) crashes, the highest number can be xe(0) + Cre(0).



or accepted over any of the edges. Also, according to lemma 4, all the nodes have an

updated description of all the edges inside their vicinity. 2

A.2 Outer algorithm

Lemma 5 Let t0 be the time after which no topological changes occur. A �nite time

after t0, every node at distance R hops from an arbitrary responsible node r, will publish

itself as border node of order 1 for r, and no more messages regarding border node of

order 1 for r will be sent or accepted.

Proof: According to theorem 1 of the inner protocol, there is a time (t1 > t0) after

which all nodes within the vicinity of an arbitrary node r, know their distance from r.

This includes all the nodes at distance of exactly R hops. Therefore, according to line 3

in CHECK BORDER, node B that is at distance of R from r, will publish itself as a

border node of order 1 for r. After a �nite time, according to theorem 1, all the nodes

within B 's vicinity will receive the information that B is a border node of order 1 for r.

Similarly, at t1 every node which published itself as a border node of order 1 for r, and

it is not at distance of R will publish to all the nodes within its vicinity that it is no

longer a border node of order 1 for r. Therefore, after a �nite time from t1, nodes which

now are at distance of exactly R hops from r will �nish publishing themselves and no

more messages regarding border nodes of order 1 for r will be sent or accepted. 2

Lemma 6 Let t0 be the time after which no topological changes occur. A �nite time

after t0, every node at distance of ` � R hops from an arbitrary responsible node r, will

publish itself as border node of order ` for r, and no more messages regarding border

node of order ` for r will be sent or accepted.

Proof: Let us look, without loss of generality at one responsible node r. Let's prove

the lemma by applying induction on the distance from r. The base of the induction is

proven at lemma 5. According to lemma 5 all the nodes, in radius less or equal to 2�R

will know r since all the border nodes of order 1 for r have published themselves.

The step of the induction assumes that a node at distance less or equal to (n� 1)�R

knows at least one border node of order n-1 or less for r and no more messages regarding

border node of order (n-1) for r are sent or accepted. Let's look at an arbitrary node n

at distance of n �R. Within n vicinity there is at least one node v that is at distance



of exactly (n� 1)�R from r since n vicinity radius is 1�R. v knows its distance from r

according to the assumption. Therefore, v must have published itself as a border node

of order (n-1) for r and since n is inside v 's vicinity, n must know that v is a border

node of order (n-1) for r. n must publish itself as a border node of order n for r to

all the nodes within its vicinity. Since the number of such nodes is �nite, after a �nite

time, all these nodes will publish themselves as border node of order n for r and no more

messages regarding border node of order n for r will be sent or accepted. 2

Theorem 5 After a �nite time since the last edge topological change or the last node

crash, no more messages are sent or accepted and every node has inside its vicinity at

least one border node for every node in the graph.

Proof According to lemma 6, every node at distance of `�R hops from an arbitrary

responsible node r, will publish itself as border node of order ` for r. This is true for all

the nodes in the graph, therefore, if an arbitrary node k is at distance n �R from r, it

will become a border node of order n for r. After a �nite time, all the border nodes in

the graph will �nish to publish themselves and all the nodes in the graph will have at

least one border node of any order inside their vicinity. 2


