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Abstract

Current high-speed packet switching systems, ATM

in particular, have large port bu�ering requirements.

The use of highly integrated ASIC technology for im-

plementing high-degree and high-speed switch fabrics is

facing a technology mismatch in the sense that today's

chip technology does not allow to integrate on-chip the

high-speed switching fabric with the large bu�ering re-

quirements. Consequently, many designs are based on

the principles of queueing displacement, i.e., they at-

tempt to move the queueing point o�-chip. This is

usually done by considerably speeding-up the on-chip

switch output ports and placing a second external stage

of bu�ering between the switch fabric and the outgo-

ing link circuitry. Such designs are very popular and

are used by many current ATM switch vendors. While

such schemes are widely used, no rigorous analysis has

so far been o�ered to evaluate the design trade-o�s and

to quantify the design points.

The model we use to analyze the performance of the

above system is a two-node tandem queueing system.

The �rst node in the tandem corresponds to the inter-

nal bu�er while the second node in the tandem corre-

sponds to the external bu�er. It is assumed that the

internal bu�er is capable to transfer c1 cells per time

unit to the external bu�er, while the external bu�er is

served at a lower rate of c2 cells per time unit.
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1 Introduction

This paper addresses basic design and perfor-
mance issues in the architecture of hardware based
fast packet switches. The ability to implement
cost-e�ective high-speed switches in silicon is (along
with the advance of �ber-optic technologies) the en-
abling technology behind the recent rise of broad-
band integrated networks, in particular the ATM ar-
chitecture [1, 2, 3, 4, 5, 6]. Fast hardware based
switches have also been at the core of the emerg-
ing switched LAN (also termed switching hubs) prod-
ucts as well as the new generation of Gigabit routers
[www.bbn.com/magazine/techwatch/router.html].

Current switching system designs in high-speed
packet-switching networks and in particular the
emerging ATM market have large and consistently
growing port bu�ering requirements. This trend fol-
lows the expected use of ATM networks for bursty
data applications, the use of reactive ow control
over ever increasing link speeds and the separation
of di�erent QoS classes and connection groups to
dedicated bu�ers. While in the past ATM vendors
have frequently o�ered switches with less than a hun-
dred cell (5Kbytes) bu�ers, the numbers today have
grown typically to more than 10K cell bu�ers. These
numbers are expected to continue to grow with the
speed of links, with the geographical distances, as
well as with the use of more sophisticated bu�er
scheduling mechanisms. For example, Fore System
[www.fore.com/html/products/datasheets/2famcamp.
html] advertises bu�er sizes of 53K cells (almost
3Mbytes) and 212K cells (11Mbytes) for its ASX-
200 and ASX-1000 ATM switches, respectively.
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Cisco [www.cisco.com/warp/public/641/16.html] ad-
vertises 64K cells output bu�ers per link for its
LightStream 2020 ATM switch. Stratacom pro-
vides 64K cells per port at its BPX switch
[www.stratacom.com/products/bpxaxis.html]. The
GTE [www.gte.com/Cando/Carrier/Docs/Wired/
span4000.html] SPANet 4000 ATM switch is designed
with a bu�er size of 16K cells.

Most hardware based switch designs rely on the new
generation of CMOS ASICs which are very popular
within products which require fast turn-around and
at the same time high integration and high perfor-
mance. (Nevertheless, these following statements are
also correct for today's fully custom VLSI designs.)
The use of highly integrated ASIC technology for im-
plementing high-degree and high-speed switch fabrics
(8X8 to 32X32 with 155-622Mbps) is facing a tech-
nology mismatch in the sense that today's technology
does not allow to integrate within the same ASIC the
high-speed switching fabric logic of many ports with
the large amount of fast memory required to bu�er all
switch output ports.

ASIC

C2C1Switch

Fabric

Figure 1: Speedup used to extend the memory in an
ASIC based switch

Consequently, many designs are based on the prin-
ciples of queueing displacement, i.e., the attempt to
move the queueing point o�-chip and implement the
main bu�er using standard RAM technology. This
is usually done by considerably speeding-up the in-
tegrated switch output ports (compared to the ac-
tual link speed supported) and placing a second
stage (external to the switch) of bu�ering between
the switch fabric and the outgoing link. The much
higher speed at which the internal bu�er is o�-loaded,
considerably reduces its memory requirements for a
given overow probability design point. Such a de-
sign is very popular and is used by many current

ATM switch vendors (usually termed as speedup). In
particular, the ones which base their bu�ering de-
sign on output queueing techniques. (Other designs
are also possible, for example, pure input queue-
ing or a shared memory design based exclusively
on o�-the-shelf RAM.) Figure 1 depicts an ASIC
with a limited on-chip bu�er at the switching fab-
ric being extended with an external memory us-
ing the speedup technique. For example, the IBM
switch-on-a-chip Prizma chip is limited by the num-
ber of on-chip bu�ers and employs speedup technique
[www.zurich.ibm.com/Technology/ATM/SWOCPWP]
and [8]. Bay Networks, uses speedup in its Lattice
Cell switch design to increase the e�ective amount of
bu�ers in its multi-stage switching fabric.

While speedup schemes are widely used, no rigor-
ous analysis has so far been o�ered to evaluate the
design trade-o�s and to quantify the design points.
The designer would like to evaluate the size of the
internal and external bu�ers required for a certain de-
sign point as well as the speed of the path connect-
ing them together. In particular, it is attractive to
map (or lower bound) such dual stage designs to the
performance of an \ideal" output queueing design in
order to be able to compare di�erent switches of dif-
ferent design points. The following works have ad-
dressed the speedup problem or have used queueing
models which are related to our problem. In [10], the
speedup e�ect was explored using a tandem system
model composed of an M/M/C queue feeding a de-
pendent M/M/1 queue. This model was investigated
by extensive simulation and no rigorous analysis was
carried out for the speedup problem. In the relevant
tandem queues models only limited results are avail-
able. In [9] a tandem of two single server discrete-time
queues with independent and identically distributed
external arrival processes, where the output of one
queue is fed as an additional input for the other queue
is solved. This is a special case of our solution when no
speedup exists and the server can serve only a single
cell at a time slot. In [11, 12] Boxma analyzes two ex-
ponential single server queues in series where the �rst
queue has a Poisson arrival process and the second is
fed by the output of the �rst. In both queues the same
customers have the same service times. In this case,
again, the system in question has no speedup. In [13]
a tandem of multiple queues in which message sizes
are preserved is considered. Several properties of the
joint work load distribution (but no full solution) are
presented and proved for such a system.

The model we use to analyze the performance of the
system with speed-up is a two-node tandem discrete-
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time queueing system. The �rst node in the tandem
corresponds to the internal (in-ASIC) bu�er while the
second node in the tandem corresponds to the external
bu�er. We begin the analysis of this system assum-
ing that the external bu�er can output at most one
cell per slot and derive the generating function of the
joint probability distribution of the lengths of the two
bu�ers. Moments of the queue lengths are then de-
rived. In addition, we introduce an explicit recursion
to compute the joint probability distribution. From
this we are able to compute tail probabilities that en-
able us to dimension the length of the bu�ers required
to guarantee small loss probabilities when the bu�ers
are �nite. Speedup of two has special implementation
importance as it is a very common and convenient
speedup to design and use. It usually does not require
tricky clock resynchronizations as either one clock is
derived from the other or the path that connects the
two bu�er stages is of double width. Intuitively, with
such speedup, the load on the �rst bu�er stage is only
half the load on the output port. In a well controlled
network, no link should be overloaded (on the average)
and hence the �rst port has a load limitation of 0.5.
This rather low load should enable us to use very few
bu�ers at the internal �rst stage. Our main numerical
conclusion supports this intuition and shows that the
internal bu�er can be kept small without damaging
the performance of the whole system. We extend the
analysis to more general models in which the exter-
nal bu�er can output several cells per slot, and again
obtain the generating function of the joint probability
distribution of the lengths of the two bu�ers and the
moments. The conclusions obtained are similar to the
above.

2 The Model
The model we use to analyze the performance of the

system with speed-up is a two-node tandem discrete-
time queueing system. The �rst node in the tandem
corresponds to the internal (in-ASIC) bu�er while the
second node in the tandem corresponds to the exter-
nal bu�er. Time is slotted into �xed size slots. It is
assumed that during each slot the internal bu�er is ca-
pable to transfer c1 cells to the external bu�er, while
the external bu�er is capable to output from the sys-
tem c2 cells. Since the internal bu�er is faster than
the external bu�er, c1 > c2. Note that when c2 = 1
we have integral speedups (c1 : 1), while for a general
c2 we can have any rational speedup (c1 : c2).

Let A
(n)
1 and A

(n)
2 be the number of new cells ar-

riving (from outside the system) during slot n to the
�rst node and the second node, respectively. The
arrival process of these new cells at the system is

assumed to be an independent and identically dis-

tributed (in each slot) process, namely, fA
(n)
1 ; A

(n)
2 g

is independent of fA
(k)
1 ; A

(k)
2 g for any n 6= k, and

Prob(A
(n)
1 = i; A

(n)
2 = j) = ai;j is independent of

n. Let A(z1; z2) =
P1

i=0

P1
j=0 ai;jz

i
1z

j
2 be the joint

generating function of the arrival processes to the
two nodes. Note that arrivals to the two bu�ers
in the same slot may be correlated. We let rl =P1

i1=0

P1
i2=0

ilai1;i2 = @A(z1; z2)=@zljz1=z2=1 be the
arrival rate of cells to node l (l = 1; 2). For the sake
of the analysis, we assume that both bu�ers are of in-
�nite size. We will later discuss how this assumption
can be dealt with to attain the performance of real-
istic switches. (Note that the speedup based output
port system corresponds to the case with no external
arrivals to the second node, i.e., ai;j = 0; j > 0.)

3 Analysis
We begin our analysis with c2 = 1, namely, a single

cell can be transmitted by the second node and leave
the system during a slot. Note that when c1 = 1, our
system is identical to the system analyzed in [9]. In
our analysis we are interested in computing the steady-
state probabilities of the lengths of the two nodes.
Since at most one cell can leave the system during
a slot, steady-state exists if r1 + r2 < 1.

Assume that departures take place at the end

of slots and arrivals within slots. Let Q
(n)
1 and

Q
(n)
2 denote the lengths of the �rst node and the

second node at the end of slot n, respectively.

Let p
(n)
i;j = Prob(Q

(n)
1 = i ; Q

(n)
2 = j) and

G(n)(z1; z2) =
P1

i=0

P1
j=0 p

(n)
i;j z

i
1z

j
2 be the generating

function of the joint queue length distribution at both

nodes. We let pi;j = limn!1 p
(n)
i;j and G(z1; z2) =

limn!1G(n)(z1; z2).
The evolution equation of the queue lengths for n �

0 is given by

Q
(n+1)
1 = (Q

(n)
1 � c1)

+ + A
(n)
1

Q
(n+1)
2 = (Q

(n)
2 � 1)+

+ min(Q
(n)
1 ; c1) +A

(n)
2 (1)

From which we have in steady-state (n!1),

G(z1; z2) = A(z1; z2)fp0;0 +

c1�1X

i=1

pi;0z
i
1 � z

�i
1 zi2

+

c1�1X

i=1

1X

j=1

pi;jz
i
1z

j
2 � z

�i
1 zi�12

+

1X

j=1

p0;jz
j
2 � z

�1
2 +

1X

i=c1

pi;0z
i
1 � z

�c1
1 zc12
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+

1X

i=c1

1X

j=1

pi;jz
i
1z

j
2 � z

�c1
1 zc1�12 g (2)

Simple algebraic manipulations yield the following,

G(z1; z2) = A(z1; z2)
B(z1; z2)

zc11 z2 � zc12 A(z1; z2)
(3)

where B(z1; z2) =
Pc1�1

i=0 [pi;0(z2�1)+ gi(z2)](z
c1
1 zi2�

zi1z
c1
2 )+G(z1; 0)z

c1
2 (z2�1) and gi(z2) =

1
i!
@Gi(z1;z2)

@zi
1

at

z1 = 0.
In (3), we encounter a common phenomenon in de-

pendent queues, namely, that the generating functions
G(z1; z2) is expressed in terms of several boundary
functions. In order to uniquely determine G(z1; z2)
we will have to determine the boundary functions,
G(z1; 0) and gi(z2); 0 � i � c1 � 1. In what follows,
we develop the method for obtaining these boundary
functions. Along this process we mainly use the an-
alytic properties of the generating functions G(z1; z2)
in the disk jzij < 1 ; i = 1; 2.

We begin by letting z2 ! 0 in (2) to obtain
G(z1; 0) = A(z1; 0)[p0;0+ p0;1]. When z1 = 0 we have
that

p0;0 = a0;0(p0;0 + p0;1) (4)

Therefore we can express G(z1; 0) (and the corre-
sponding probabilities pi;0; i � 1) in terms of the
constant p0;0 as follows,

G(z1; 0) = A(z1; 0)
p0;0

a0;0
; pi;0 = ai;0

p0;0

a0;0
i � 1(5)

To determine gi(z2); 0 � i � c1 � 1, we use
the fact that for any jz2j < 1, the denominator
zc11 z2 � zc12 A(z1; z2) of (3) has exactly c1 roots within
the unit disk jz1j < 1 (the proof is based on Rouche`s
Theorem). Let these roots be denoted by �l(z2); 1 �
l � c1. Since G(z1; z2) is an analytic function in the
disk jzij < 1 ; i = 1; 2, the nominator of (3) must
vanish at each of these roots, i.e.,

B(�l(z2); z2) = 0 ; 1 � l � c1 (6)

where in the above we use pi;0 from (5) and
G(�l(z2); 0) = A(�l(z2); 0)p0;0=a0;0. Expression (6)
is a set of c1 (linear) equations that determines the
functions gi(z2); 0 � i � c1 � 1 up to the constant
p0;0.

To complete the derivation of the generating func-
tion we need to compute that constant. To that end,
let z1 = z2 = z in (3) to obtain,

G(z; z) = A(z; z)
G(z; 0)(z � 1)

z �A(z; z)

= A(z; z)
A(z; 0)p0;0(z � 1)

a0;0[z � A(z; z)]
(7)

Letting z ! 1 in the above and assuming that the
steady-state condition r1+ r2 < 1 holds, we obtain by
using L'Hôpital's law,

p0;0 =
a0;0(1� r1 � r2)

A(1; 0)
(8)

This completes the derivation of the joint generating
function of the queue-length probability distribution.

Using the generating function we can obtain the
average number of cells in node i (i = 1; 2), denoted
by Li. Letting z2 = 1 in (3) we have

G(z1; 1) = A(z1; 1)

c1�1X

i=0

gi(1)(z
c1
1 � zi1)

zc11 �A(z1; 1)

Taking the derivative of the above expression with re-
spect to z1 and letting z1 ! 1 we obatin,

L1 = r1 +

c1�1X

i=0

gi(1)(c
2
1 � i2) + r1 � c21 + Â

2(c1 � r1)
(9)

where Â = d2A(z; 1)=dz2jz=1.
Taking the derivative of (7) with respect to z and let-
ting z ! 1 we obatin (using (8)),

L1+L2 = r1+r2+
dA(z; 0)

dz
jz=1+

d2A(z;z)
dz2

jz=1

2(1� r1 � r2)
(10)

Subtracting (9) from (10) we obtain the average num-
ber of cells in the second node L2.

4 The Probability Distribution
The joint generating function derived in the previ-

ous section allows us to compute p0;0 and the average
quantities easily. However, the computation of the
probabilities themselves is di�cult. In this section we
develop a recursion for the computation of the steady-
state probabilities pn1;n2 . From equation (4) we obtain
p0;1 = p0;0(1�a0;0)=a0;0. Together with equations (5)
and (8) we have the initial conditions for the recursion,
i.e., we know pi;0; i � 0 and p0;1.

Next, we compute the probabilities pn1;n2 for n1 �
0 and 1 � n2 � c1 � 1 (except for p0;1 that is known
already). In order to have n2; 1 � n2 � c1 � 1; cells
in the second queue, the number of cells in the �rst
queue at the end of the previous slot have to be less
or equal to n2. Assume the number of cells in the �rst
queue is i; 0 � i � c1 � 1; then in order to have n1
cells in the �rst queue, all n1 cells have to arrive from
the external source. Further, assuming that j cells
arrive to the second queue from the external source,
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the total number of cells that arrive to the second
queue is i+ j. If the second queue is not empty at the
end of the previous slot, then in order to have n2 cells,
the number of cells at the end of the previous slot have
to be n2+1� i� j, where the plus 1 accounts for the
cell that must have departed the second queue. We
have for n1 � 0; 1 � n2 � c1 � 1 that

pn1;n2 =

n2X

i=0

pi;0an1;n2�i

+

n2X

i=0

n2�iX

j=0

pi;n2+1�i�jan1;j (11)

where the �rst sum corresponds to the case where the
second queue is empty at the end of the previous slot.
Note that n1 appears in the right hand side of equation
(11) only in an1;l for some l (and does not appear
in any of the p's). In equation (11) we compute the
probabilities pn1;n2 in increasing order of n2 as follows.
We assume that pi;j for i � 0; 0 � j � n2 � 2 as well
as p0;n2�1 are known (initially, for n2 = 2 this is true
as explained at the beginning of this section). Next,
we compute p0;n2; p1;n2�1 by solving two equations
with two unknowns. These equations correspond to
equation (11) with p0;n2�1 and p1;n2�1 in the left hand
side. Note that the unknown p0;n2 appears only in the
right hand side of (11), while the unknown p1;n2�1
appears also in the left hand side. After some simple
algebra we obtain the solution for p0;n2; p1;n2�1 as,

p0;n2 = (�1;n2(1)a0;0 � �1;n2(0)(a1;0 � 1))=a0;0

p1;n2�1 = (�1;n2(0)a1;0 � �1;n2(1)a0;0)=a0;0 (12)

where we de�ne

�1;n2(l)
�
= 1fl = 0gp0;n2�1

�

min(c1;(n2�1))X

i=0

n2�iX

j=1

pi;n2�i�jal;j�1fj=n2�ig

�

min(c1;(n2�1))X

i=2

pi;n2�ial;0 l = 0; 1 (13)

Now the probabilities pn1;n2�1 for n1 � 2 are com-
puted directly from equation (11). Recursing this pro-
cedure completes the computation of the probabilities
pn1;n2 for n1 � 0 and 1 � n2 � c1 � 1.

Next, we compute the probabilities pn1;n2 for n1 �
0 and n2 � c1. There are two cases to consider in the
recursion, the �rst is when the number of cells in the
�rst queue is less than c1 in which case all cells move
to the second queue, and the case where the number
of cells in the �rst queue is greater or equal to c1 in

which case only c1 cells move from the �rst queue to
the second queue. Similar to the previous recursion,
we have for n1 � 0; n2 � c1,

pn1;n2 =

c1�1X

i=0

pi;0an1;n2�i

+

c1�1X

i=0

n2�iX

j=0

pi;n2+1�i�jan1;j

+

n1+c1X

i=c1

pi;0an1+c1�i;n2�c1

+

n1+c1X

i=c1

n2�c1X

j=0

pi;n2+1�c1�jan1+c1�i;j(14)

In the same way as before, we write two equations for
p0;n2�1 and p1;n2�1, from which we obtain the prob-
abilities p0;n2; p1;n2�1. Then we use equation (14) to
compute the probabilities pn1;n2�1 for n1 � 2. The
solution for p0;n2; p1;n2�1 in this case is given by:

p0;n2 = (�2;n2(1)a0;0 � �2;n2(0)(a1;0 � 1))=a0;0

p1;n2�1 = (�2;n2(0)a1;0 � �2;n2(1)a0;0)=a0;0 (15)

Where we de�ne �2;n2(0)
�
= �1;n2(0) and �2;n2(1)

�
= �1;n2(1)+

Pn2�c1
j=0 pc1+1;n2�c1�ja0;j�1fj=n2�c1g.

Now the probabilities pn1;n2�1 for n1 � 2 are com-
puted directly from equation (14). This completes the
computation of the probabilities pn1;n2 for n1 � 0 and
n2 � c1.

The computation complexity of the probabilities
pn1;n2 for 0 � n1 � N1 and 0 � n2 � N2 is in the
order of O(N2

1N
2
2 ).

4.1 Overow Probability

Since we use in�nite bu�ers in our model, we ap-
proximate the cell loss probability by the bu�er over-
ow probability. The �rst (second) node is in overow
state when the number of cells in the bu�er exceeds
N1 (N2).

If the state upon arrival is (n1; n2), then the the
number of cells in the second queue in front of this
cell, when this cell arrives to the second queue, will

be n1+n2�
Pd(n1+1)=c1e

i=1 A2(i)�d(n1+1)=c1e, where
A2(i) denotes the number of cells that arrive to the
second queue in slot number i (the slot of arrival of
the cell is marked as slot number 1). This is true since
1. The cell will arrive at the second queue d(n1+1)=c1e
slots after it arrived to the system, and 2. c1 > 1 and
hence the second queue will not empty in the next
d(n1 + 1)=c1e slots after the arrival of this cell.

Correspondingly, we de�ne the overow probability
in the system as the probability that the number of
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cells in the �rst and second nodes at slot boundaries
ful�l the relation (n1; n2) 2 f(n1; n2) j n1 > N1; n1 +
n2 � d(n1 + 1)=c1e > N2g.

Next, we consider a system without external ar-
rivals to the second queue, i.e., ai;j = 0; j > 0. Then,
the overow probability in the system is equal to

Poverflow = 1�

N1X

n1=0

N2+d(n1+1)=c1e�n1X

n2=0

pn1;n2 (16)

5 The case c2 > 1
We now consider a system with c2 > 1, namely, sev-

eral cells (c2) can be transmitted by the second node
and leave the system during a slot. As before, we are
interested in computing the steady-state probabilities
of the lengths of the two nodes. Since c2 > 1 cells can
leave the system during a slot, steady-state exists if
r1 + r2 < c2.

With the same notations as in Section 3 the evolu-
tion equation of the queue lengths for n � 0 is given
by

Q
(n+1)
1 = (Q

(n)
1 � c1)

+ + A
(n)
1

Q
(n+1)
2 = (Q

(n)
2 � c2)

+

+ min(Q
(n)
1 ; c1) +A

(n)
2 (17)

Similar to the method for obtaining (2), we obtain in
this case,

G(z1; z2) = A(z1; z2)f

c1�1X

i=0

c2�1X

j=0

pi;jz
i
1z

j
2 � z

�i
1 z

i�j
2

+

c1�1X

i=0

1X

j=c2

pi;jz
i
1z

j
2 � z

�i
1 zi�c22

+

1X

i=c1

c2�1X

j=0

pi;jz
i
1z

j
2 � z

�c1
1 z

c1�j
2

+

1X

i=c1

1X

j=c2

pi;jz
i
1z

j
2 � z

�c1
1 z

c1�c2
2 g (18)

and after simple algebraic manipulations we get,

G(z1; z2) = A(z1; z2)
B(z1; z2)

zc11 zc22 � zc12 A(z1; z2)
(19)

where B(z1; z2) =

c1�1X

i=0

[

c2�1X

j=0

pi;j(z
c2
2 �

zi2)+gi(z2)](z
c1
1 zi2�z

i
1z

c1
2 )+

c2�1X

j=0

fj(z1)z
c1
2 (zc22 �zj2) and

gi(z2) =
1
i!

@Gi(z1;z2)

@zi
1

jz1=0, fj(z1) =
1
j!

@Gj(z1;z2)

@z
j

2

jz2=0.

In order to uniquely determine G(z1; z2) we will have
to determine the boundary functions, fj(z1); 0 � j �
c2 � 1 and gi(z2); 0 � i � c1 � 1. In what follows, we
demonstrate the method for obtaining these boundary
functions. Along this process we mainly use the an-
alytic properties of the generating functions G(z1; z2)
in the disk jzij < 1 ; i = 1; 2.

We begin by taking the l-th derivative (0 � l �
c2� 1) of both sides of (18) with respect to z2 and let
z2 ! 0 to obtain,

fl(z1) =

lX

k=0

Al�k(z1) uk
(l � k)!

(20)

where Ai(z1) = @Ai(z1; z2)=@z
i
2jz2=0, and uk =Pc2

j=0 pk;j +
Pk�1

j=0 pj;c2+k�j .
Consequently, fl(z1) (and the corresponding prob-

abilities pi;l; i � 0) are expressed in terms of the con-
stants uk; 0 � k � l. To determine these constants,
we let z1 = z2 = z in (19) to obtain,

G(z; z) = A(z; z)
B̂(z)

zc2 � A(z; z)
(21)

where B̂(z) =
Pc2�1

j=0 (zc2 � zj)
Pj

k=0Aj�k(z) uk=(j�
k)!. Letting z ! 1 in the above and assuming that the
steady-state condition r1 + r2 < c2 holds, we obtain

c2 � r1 � r2 =

c2�1X

j=0

(c2 � j)

jX

k=0

Aj�k(1) uk

(j � k)!
(22)

Furthermore, the denominator zc2 � A(z; z) of (21)
has one root at z = 1 and exactly c2 � 1 roots within
the unit disk jzj < 1 (the proof is based on Rouche`s
Theorem). Let these roots be denoted by �l; 1 � l �
c2�1. Since G(z; z) is an analytic function in the disk
jzj < 1, the nominator of (21) must vanish at each of
these roots, i.e., for 1 � l � c2 � 1,

c2�1X

j=0

(�c2l � �
j
l )

jX

k=0

Aj�k(�l) uk

(j � k)!
= 0 (23)

Equation (22) together with (23) is a set of c2 (linear)
equations that determines the constants uk; 0 � k �
c2 � 1, and hence the boundary functions fj(z1); 0 �
j � c2 � 1 are determined (using (20)). From fj(z1)
we can obtain pi;j; j � 0 by taking the i-th derivative
of fj(z1) with respect to z1 and letting z1 ! 0.

To determine gi(z2); 0 � i � c1 � 1, we use the
same procedure described in Section 3. In particular,
we note that for any jz2j < 1, the denominator zc11 zc22 �
zc12 A(z1; z2) of (19) has exactly c1 roots within the
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unit disk jz1j < 1 (the proof is based on Rouche`s
Theorem). Let these roots be denoted by �l(z2); 1 �
l � c1. Since G(z1; z2) is an analytic function in the
disk jzij < 1 ; i = 1; 2, the nominator of (19) must
vanish at each of these roots, i.e.,

B(�l(z2); z2) = 0 1 � l � c1 (24)

Expression (24) is a set of c1 (linear) equations that
determines the functions gi(z2); 0 � i � c1 � 1.

This completes the derivation of the joint generat-
ing function of the queue-length probability distribu-
tion. In [14] we provide the procedure for computing
the joint probability distribution in this case.

Using the generating function we can obtain the
average number of cells in node i (i = 1; 2), denoted
by Li, as was done in Section 3. In fact, the average
number of cells in the �rst node does not change with
c2, hence is identical to (9). Taking the derivative of
(21) with respect to z and letting z ! 1 we obatin,

L1 + L2 = r1 + r2 +

d2A(z;z)
dz2

jz=1

2(c2 � r1 � r2)

+
Â � c2(c2 � 1)

2(c2 � r1 � r2)
(25)

where Â =

c2�1X

j=0

jX

k=0

uk

(j � k)!
f[c2(c2 � 1) � j(j �

1)]Aj�k(1) + 2(c2 � j)dAj�k(z)=dzjz=1g. Subtracting
(9) from (25) we obtain the average number of cells in
the second node L2.

6 Numerical Results
In the �rst example cells arrive to the system

(through the �rst node only) according to a Poisson
process with rate �. We set c1 = 2 and c2 = 1. In
Figure 2 we plot the overow probability in the system
versus the internal bu�er size for external bu�er size of
80 cells and load of � = 0:9. We also plot the overow
probability in the internal bu�er, external bu�er and
in an \ideal" output bu�er switch with c1 =1. From
Figure 2 we notice that for internal bu�er size greater
or equal to 15, the overow probability in the system
is less than the overow probability in the \ideal" sys-
tem. Also, the main contribution to the total overow
probability for small (large) internal bu�er sizes comes
from the internal (external) overow probability. No-
tice that the internal bu�er reduces the burstiness of
the input process to the external bu�er by limiting the
maximum number of cells that can arrive to the exter-
nal bu�er to c1 = 2, and hence the overow probability
in the system and in the external bu�er is smaller than
the overow probability in the \ideal" system.

We obtained numerical results for di�erent external
bu�er sizes and loads where the overow probability
in the \ideal" system was kept at 10�7. In all exam-
ples, an internal bu�er size between 12 and 14 cells
was su�cient to bring the overow probability in the
system below 10�7. The same phenomena described
in Figure 2 were observed in all examples.
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Figure 2: Overow probability versus internal bu�er
size for load of 0.9 and external bu�er size of 80 cells.

More numerical results are provided in Figure 3
where we plot the overow probability versus the av-
erage load for internal bu�er size of 15 and external
bu�er size of 40. We see again that internal bu�er size
of 15 is enough to achieve smaller overow probabil-
ity in the system compared to the \ideal" system, for
average load of 0.75 or larger (for the range of � 10�9

overow probability this is the relevant load range).
Numerical results for the case c2 > 1 are provided in
[14].
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Figure 3: Overow probability versus average load for
internal bu�er size of 15 and external bu�er size of 40.
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We also simulated a system with bursty tra�c
model that corresponds to VBR tra�c class. Here
we used three groups of sources. Each group consists
of 10 identical sources. Each source corresponds to In-
terrupted Poisson Process (IPP) model, with sources
in the �rst group having an average ON period of 100
slots and average OFF period of 100 slots. The sec-
ond and third group sources have average (ON, OFF)
periods of (100, 300) and (100, 900), respectively. The
average load in the system is termed "VBR Load" and
the total load of each group is "VBR Load"/3. Table 6
contains the overow probability in the \ideal" system
and in the system versus "VBR Load" for di�erent in-
ternal bu�er sizes. The conclusions are similar to the
Poisson model.

VBR Load Ideal IB = 8 IB = 10 IB = 15 IB = 20

0:62 2:42 10�4 3:05 10�4 2:54 10�4 2:38 10�4 2:38 10�4

0:66 7:15 10�4 8:08 10�4 7:31 10�4 7:07 10�4 7:07 10�4

0:70 1:68 10�3 1:81 10�3 1:70 10�3 1:66 10�3 1:66 10�3

0:74 3:35 10�3 3:56 10�3 3:39 10�3 3:31 10�3 3:31 10�3

0:78 6:07 10�3 6:29 10�3 6:09 10�3 6:02 10�3 5:61 10�3

0:82 1:04 10�2 1:06 10�2 1:04 10�2 1:03 10�2 1:03 10�2

Table 1: Overow probability versus VBR Load for
external bu�er size of 100.
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