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Synchronizing Asynchronous Bounded Delay Networks 
CHING-TSUN CHOU, ISRAEL CIDON, INDER S. GOPAL, AND SHMUEL ZAKS 

Abstract-An efficient way to synchronize  an  asynchronous  network 
with a bounded  delay  message  delivery  is  presented.  Two  types  of  syn- 
chronlzaiioo  algorithms are presented.  Both  types  require  an  initializing 
phase that costs IEl messages  (where IEl is  the  number of links). The 
first requires  an additional hit in every  message and increases  the  time 
complexily by a factor of 2. The  second  does  not  require  any additional 
hits  but  increases the time  complexity by a factor of 3. We also  explain 
how to overcome  differences  in  nodal  timer  raies. 

I. INTRODUCTION 
Several models for distributed communication networks have been 

described in the literature. Two of them have bccn extensively used 
for the development of distributed algorithms-the synchronous and 
the asynchronous models. 

The synchronous model assumes a common clocking system for 
all nodes and a bounded message delivcry delay. Essentially, time 
can be thought of as being partitioned into slots. Message transmis- 
sions always occur at a fixed position in a slot. If a node transmits 
a message during slot i it is guaranteed that the message will be 
received (and processed) by all neighbors by the start of slot i + I .  
Distributed algorithms that operate in phases or cycles fit naturally 
into this model.  The synchronous nature of the message transmissions 
ensures that all the information of the previous cycle is available to 
a nodc before sending the messages of the next cycles. 

The asynchronous model assumes no common clocking facility 
and typically assumes a finite but unbounded delay for message de- 
livery. Consequently, many distributed algorithms designed for asyn- 
chronous networks are considerably less efficient in terms of time and 
message complexity than those designed for synchronous networks. 

An interesting approach is given in [l] where the author imple- 
ments a synchronizer in an asynchronous network  in order  to simu- 
late the synchronous model and to execute a synchronous distributed 
algorithm in an asynchronous network. The synchronizer itself is a 
distributed algorithm which enables the nodes to define time slots 
and to detect when such slots start and end. The slots are guaranteed 
to  have the same property as in the synchronous network, i.e., mes- 
sages transmitted by a node during its slot i will be received  (and 
processed) by all neighbors before the start of their slot i + 1. Notc 
that the slots in different nodes do not necessarily occur at the same 
instants in time. Whilc synchronous algorithms can  now operate in 
this network, an overhead must be paid for the operation of the syn- 
chronizer itself, resulting in increased complexity for the operation 
of the given synchronous algorithms. 

In many practical communication systems the asynchronous model 
can be strengthened. While it is still true that most systems lack 
a common clocking mechanism, they do often guarantee message 
delivery within a fixed  (and small) time bound. This is particularly 
true of the new generation of computer networks (for example, [2]), 
which are comprised of  high speed fiber optic lines and  in  which the 
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messages are routed through specialized high speed hardware rather 
than in general purpose processors. In addition, the nodes in these 
systems have highly accurate timers which are not synchronized with 
each othcr but operate  at equal rates. 

In this paper we  show that in  such a model-asynchronous with 
bounded delay (ABD)-the implementation of a synchronizer is con- 
siderably simpler than in the truly asynchronous model. Conse- 
quently, the complexity added to the operation of synchronous algo- 
rithms in  an ABD network is considerably lower than in a truly asyn- 
chronous network. Two synchronization algorithms are presented in 
this paper. In both algorithms there is an initialization phase that 
costs IEl messages (where JEl is the number of links). The first al- 
gorithm requires an additional bit  in cvery message and increases the 
time complexity by a factor of 2. The second does not require any 
additional bits but increases the time complexity by a factor of 3. 

Thus, either synchronizer preserves the order of complexity of 
thc synchronous algorithm while only increasing the constant factor. 
Consequently, for many problems such as breadth first search (BFS) 
[2] and finding maximum flow, an ABD network can be substantially 
better than a truly asynchronous network. 

While the timers in the nodes are usually accurate, it  is useful to 
have a synchronizer that is robust enough to work with some timer 
inaccuracies. We show that the synchronizers presented in the paper 
have this property at the cost of some overhead in time complexity. 

u. PRELIMINARIES 

A communication network is represented by a graph ( V ,  E )  where 
Vis the set of processing nodes and E c V x V the  set of commu- 
nication links. All links are bidirectional and a message transmitted 
hy a node over a link arrives at the othcr end with an arbitrary delay 
less than one unit  of time. Each node has a timer which can be reset 
to zero at any arbitrary time. For now, we assume that all timers 
are accurate and there is no mutual drift between timers in different 
nodes.  In the description of the algorithms we shall often refer to 
a global time. While all timers proceed at the same rate as global 
time, the actual value  of this time is  not available to the individual 
nodes and is introduced only for descriptive clarity. 

tributed implementation of breadth first search (DBFS). The objec- 
In  order to motivate the need for synchronization consider a dis- 

tive of a DBFS algorithm is  to compute the minimum distances (mea- 
s u r d  in number of hops) from a distinguished node s to all other 
nodes in the network. Upon termination of the DBFS algorithm ev- 
ery node has to know its minimum distance from s and the link on 
the corresponding shortest path to s. The synchronous implementa- 
tion of DBFS is to broadcast from 5 a message carrying a distance 
counter, whose value determines the distance from s. Node s first 
sends its neighbors the message with distance counter set to zero. 
Each node, when it receives the first copy of the message, will set 
its distance to be  one  larger than the value  of the counter, increment 
the counter, and send the message to all of its neighbors. Subsequent 
copics of the message are discarded. The algorithm takes O(lElj 
messages and O(D) time where E is the set of  links in the network 
and D is the maximal distance from any node to s. The algorithm 
works because the synchronous nature of the transmission ensures 
that the first message is always received over the shortest path from 

Now consider an implementation of DBFS on an ABD network. 
Assume thc algorithm starts at global time 0. Assume further that 
every node in the network receives a signal (say, from  an obliging 
"genie") informing it  of the start of the algorithm. The nodes now 
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can impose their own slots using their individual timers and thereby 
simulate a synchronous system. In particular, the nodes will set their 
timers to zero  at the start of the algorithm and define the rnth slot, 
m 2 0, to begin at time m and to end  at time m + 1. The DBFS 
algorithm will proceed in exactly the same way as before except that 
a processor receiving a message with distance counter d waits  until 
the end of the dth slot whereupon it sets its distance to d + 1, incre- 
ments the counter and forwards the message. Thus, s will transmit 
its message with distance counter 0 at global time 0, processors one 
hop away will receive the message before global time 1 and at that 
time will set their distance to  1, increment the distance counter and 
forward the message, and so on. Actually, no counter is needed, 
since the operation of the algorithm guarantees that every message 
received within the dth slot will have distance counter d. This solu- 
tion clearly uses O(lE1) messages and O(D) time. 

Let us now do away  with the start signal. First, we attempt to get 
rid  of the signal by using the distance message itself  to inform the 
nodes of the start of the algorithm. Upon receipt of the distance mes- 
sage, a nodc will set its timer to  zero  and, as in thc prcvious case, 
forward a message with counter d after the end  of the dth slot. Re- 
call that we are not lower bounding message delays so a node cannot 
start its timer at a value greater than 0 without risking the possibility 
that it  will forward the message too early. The algorithm operates 
correctly (the proof is left to the reader). However, it is easily seen 
that the time complexity increases to O(D2),  even though the mes- 

time complexity is because the distance message is  delayed by each 
sage complexity will remain O((E( ) .  We ohserve that the increase in 

node by d slots, d = 1, 2 , .  . . , D. Thus, we will attempt to simulate 
the start signal by introducing an initialization phase, which consists 
of node s flooding the nctwork with an initialization message before 
commencing the DBFS algorithm. The receipt of the initialization 
message causes the nodes to set their timers to zero, If the initial- 
ization message took zero time to propagate through the network, 
we  have succeeded in rcplicating the start signal. Unfortunately, we 
can only bound the message delay, thereby ensuring that the start- 
ing points of two neighboring nodes differ by less than 1. However. 
this small difference in initial synchronization causes the algorithm 
to operate incorrectly. In particular, a processor receiving a message 
carrying a counter d ,  cannot just wait  until the end of the dth time 
slot and then forward the (incremented) counter, since a message 
with a lower counter can rcach it later. In order  to ensure correct 
operation, the algorithm must be modified to send morc messages 
upon receipt of a new message with the lower counter. This increases 
the messagc complexity even though the time will remain O(D). 

Thus, we see that obvious ways  of simulating the start signal do not 
lead to DBFS algorithms that are efficient in both time and messages. 
A consequence of our synchronization algorithm to be presented in 
the next section is a DBFS algorithm that achieves both O( IE 1 )  mes- 
sage complexity and O(D) time complcxity. 

111. SYNCHRONIZATION ALGORITHMS 

A .  The  General Structure 

The synchronization algorithms presented in this section have the 
following structure. As in the algorithm presented at the end of the 
previous section, they begin with  an initialization phase which con- 
sists of a flooding of initialization messages. The initiating node, 
node s sends an initialization message (INIT) to all its neighbors. 
Each node upon receiving the first INlT message forwards this lNlT 
message to all neighboring nodes except the one from which the 
INIT message was received. As before, each node resets its timer 
to zero and starts counting the time. The difference is that the slots 
will span CY units of time (the value of a is to he determined) rather 
than a single unit  of time as  before.  Thus, the mth  slot will begin at 
time m a  and end  at time (m + 1 ) ~ .  We shall refer to a message sent 
by a node during slot m as a message of the mth cycle. 

the send on start (SOS) and the send after  delay (SAD). They 
In this paper we present two types of synchronization protocols, 

differ by the specific point of time in the slot where the nodes sends 
their messages of the current cycle, the duration of the time slot (a  

is 2 in the SOS and 3 in the SAD), and the fact that an additional 

SAD). 
bit  must he appended to in each message in the SOS (but not  in the 

B. The  Initialization  Phase 
Both the SOS and the  SAD synchronizer use the same initialization 

phase. We give a description of this phase below. 

On receiving START from  the outside world or INIT from X do 
If FLAG = 0 then do 

FLAG + 1; 
start timer from 0; 
send INIT to all neighbors except X 

end; 
end; 

Note, that FLAG can be reset after the reception of INIT from all 
neighbors. 

Let t i  be the global time at which node i rcsets its timer. The 
initialization phase has the property that for any two neighboring 
nodes j and k ,  the following inequality holds: 

t k - 1  i t ,  < t k + 1 .  (1) 

This follows from the fact that the message delay is bounded by 
1. 

C.  The  Send on Start  Synchronizer 
In the send on start (SOS) synchronizer, each node sends its mes- 

sages at the beginning of a time slot, i.e., messages of cycle m 2 0 

that k reccives j ' s  mcssage of cycle m at global time T(m)k.  The 
are sent at local time mol. Assume that j and k are neighbors and 

property of the synchronizer requires that node k receive all mes- 
sages of cycle m before the start of its m + lth  slot. This implies 
the following condition: 

T(m)k i f k  + (m + 1 ) ~ .  (2) 

However, we  know from (1) and the hound on the delay  that 

7(m)@ <t j+mol+l  < t ~ + m a + 2 = t k + ( m + I ) a + ( 2 - a ) .  

(3) 

If a 2 2 ,  inequality ( 2 )  results from inequality (3), and we are guar- 
anteed that the synchronizer performs correctly. From (1) we find that 
the message arrival time also satisfies the following lower bound: 

T(mh 2 t ;  + m a  > f k  + m a  - 1 = tk  + (m - I)U + (U - I ) .  (4) 

For a 2 2, this implies that messages for cycle m will be received 
by all neighbors after  the start of slot m - 1 as well before the 
start of slot m + 1. This implies that during slot m a node may 
receive messages from cycles m and m + 1 but not from other cycles. 
Therefore, a nodc must distinguish only between two consecutive 
cycles. Stamping the messages with the parity bit of the cycle number 
suffices for this purpose. Thus, we arrive at the following algorithm. 

The SOS Algorithm 

On TIMER = mu do 

end; 
On receiving a message stamped with STAMP do 

send messages of cycle m with STAMP = (m) mod 2 ;  

If ma T I M E R  < (rn + l )u  then do 
If (m)mod2 = S T A M P  then consider the received message 

for cycle r n ;  

end; 
Else consider the received message for cyclc m + 1; 

end; 

D .  The  Send  After  Delay  Synchronizer 

The send after delay (SAD) synchronizer removes the need for 
the binary stamping of the messages by ensuring that all messages 



of cycle rn arrive only in slot rn. This is  achieved  at the cost of 
increasing the value of a by one. In addition, Instead 01- sending the 
messages of cycle rn immediately at the start of slot m, the nodes 
wait for y units of time. 

We require that all messages sent by node j in cycle m will arrive 
at  its neighbor k in cycle m. This is equivalcnt to the following 
condition: 

tk + fnff < 7(m)k < tk + (m + 1)U. ( 5 )  

We know from the delay bound and (1) that the following two in- 
equalities hold: 

~ ( m ) k < t , + m a + l + y < t k + r n a + 2 + y  

=tk+(m+IkY+(2-01)+'y  (6 )  

r ( m ) k L t , + m u + y > t k + m ~ ~ l $ y  

= t k  + (m - 1 ) ~  + (a - 1). (7) 

By choosing y 2 1 and a L y + 2  it  is clear that (6) and (7) imply 
(5 ) .  This means that the minimum values for y and a arc 1 and 3, 
respectively. 

The SAD Algorithm 

On TIMER = ma + y do 

end; 
On receiving a message do 

send messages of cycle m 

If ma 5 TIMER < (m + l)a then 
consider the received message for cycle m; 

end; 

We end this section with the following remarks. 
1)  For the BFS example there is  an equivalence between the cycle 

number in which the distance message is sent and the node distance 
from the source. 

2) If the synchronous algorithm performed does not require FIFO 
ordering of message reception then neither docs our synchronizer. 
In a non-FIFO environment some messages may arrive before the 
initialization phase is started. In such a case one of  the following 
options may be taken: 1) consider all thosc messages received for 
cycle zero, or 2) consider the first message as a START for the 
initialization phase and treat this message as if it were received at 
local time 0. 

IV. HANDLING I ~ A C C U K A E  TIMERS 
As mentioned before, the timers are assumed to  be highly accurate 

and drift between them is typically very small. However, it is useful 
to have an algorithm that is robust enough lo cope with minor rate 
differences between the various timers in the network. Assume that 
the fastest timer will count one unit of time after at least 1 - E  units, 
while the slowest one will do it after at most I + E .  This difference in 
the timer rates may cause, after some time, a mismatch bctwccn the 
cycles at neighboring nodes. We will compute the smallest possible 
cycle number when this mismatch  may occur and then describe how 
the nodes resynchronize the timers again. 

We assume that the SAD synchronization algorithm is executed; 
similar results can he derived for  the SOS. If  we  follow the inequal- 
ities in (5 ) ,  (6 ) ,  and (7) and assume a fast clock in one node and 
a slow clock in the other, we find that the network will  not suffer 
from any mismatch as long as for cvcry two neighbors j and k the 
following inequalities hold: 

I, + ma(l + e) + 1 + -y(l + E )  < t k  + (rn + 1)a(I - E)  (8) 

t j  + rna(1 e)  + y(1 ~ e) > lk + rna(1 + E ) .  (9) 

Using (l), for (8) and (9) to be satisfied, it suffices to have the 
following conditions: 

2mae 5 a(1 - e) - 2 - y(l + E )  (10) 

In order to maximize m while satisfying both (IO) and (11). it  is 
easy to show that y should be chosen to be 

Which results that there is no mismatch problem as long as 

a ( l  - t)2 - 3 + F m<--- - . 
4aE 

The choice of (Y determines the value  of the bound. To get a 
fccling of the actual values involved let M be the maximal integer 
which satisfies (13). If the timers are accurate to within 1/10 of a 
second in  a day this gives a value  of F = I /X64 OOO. In order for 
M to be reasonably large, it is ncccssary to increase a beyond the 
value of 3 obtained without timer drift. For example, a value  of M 
close to  140000  can  be obtained by setting 01 to  be 8. 

When the cycle number exceeds M ,  there will be a mismatch 
problem and the timers need to be resynchronized. We  now describe 
the resynchronization procedure. Assume that t is a globally known 
number (given by the specifications of the timers). The goal of the 
resynchronization is to bring the network  back to  the point where the 
time difference between the reference time at each neighbor pair is 
less than one unit of time. The resynchronization is identical to the 
initialization phase, in which a flood of INIT messages brings all 
timers to a new reference time. The question is  when  and where this 
phase may start. 

A node will proceed as normal until cycle M.  It then will wait till 
the resynchronization process has completed before proceeding any 
further.  The first cycle after the resynchronization has been com- 
pleted will be considered to be cyclc M + 1 .  The resynchronization 
may be started asynchronously by each node that reaches cycle M 
after it is sure that all other nodes have reached cycle M as well. 
As mentioned, the resynchronization takes the form of a node broad- 
casting an  INIT message exactly as in the initialization phase. We 
must be sure that all nodes in the network (not just adjacent nodes) 
have completed cycle M ,  otherwise the resynchronization process 
may prevent some nodes from completing a lower numbered cycle. 
In  order to determine when all other nodes have completed cycle M 
two approaches are possible. One is to use a distributed algorithm to 
get explicit notification from every node that it has completed cycle 
M .  For example, we can use a network wide search such as a prop- 
agation of information with feedback (PIF) 141. A node that reaches 
cycle M will start a PIF and each other node will send thc fccdback 
only when it has also complctcd cyclc M .  

Another approach is to use the bounded message delay property 
of our model. We know that at cycle M (which  is still without any 
mismatch) time slots of the same cycle at adjacent nodcs still overlap. 
Therefore, a node can be sure that all other nodes have completed 
cycleMafter an additional delay of IVlu(1 +6)/(1 - 6 )  [theadditional 
factor is because a node does not  know whether its timer is  fast or 
slow]. Thus, a node completes cycle M ,  waits this additional delay 
and initiates a new initialization phase. The time of receiving or 
sending the first INIT message is defined as the beginning of cycle 
M + 1 and the messages of this cyclc will be sent y units of time after 
that. No messages are sent for detecting the termination of cycle M 
in the network. If knowledge of the network topology exists, then 
IYI may he replaced by D which is the maximal distance between 
this node and all other nodcs in thc nctwork. 

V.  DISCUSSION 

The algorithms prcsentcd in this papcr represent simple and easy to 
implement synchronizers for asynchronous bounded delay networks. 
Both algorithms preserve the order of complexity of synchronous 
algorithms while only increasing the constant factor.  The advent  of 
high speed networks with specialized switching hardware makes the 
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